
A Generic Construction for Intrusion-Resilient

Public-Key Encryption

Yevgeniy Dodis1, Matt Franklin2, Jonathan Katz3, Atsuko Miyaji4, and Moti
Yung5

1 Department of Computer Science, New York University. dodis@cs.nyu.edu
2 University of California, Davis. franklin@cs.ucdavis.edu

3 Department of Computer Science, University of Maryland. jkatz@cs.umd.edu
4 Japan Advanced Institute of Science and Technology. miyaji@jaist.ac.jp

5 Department of Computer Science, Columbia University. moti@cs.columbia.edu

Abstract. In an intrusion-resilient cryptosystem [10], two entities (a
user and a base) jointly evolve a secret decryption key; this provides very
strong protection against an active attacker who can break into the user
and base repeatedly and even simultaneously. Recently, a construction of
an intrusion-resilient public-key encryption scheme based on specific al-
gebraic assumptions has been shown [6]. We generalize this previous work
and present a more generic construction for intrusion-resilient public-key
encryption from any forward-secure public-key encryption scheme satis-
fying a certain homomorphic property.

1 Introduction

The exposure of secret keys can be a devastating attack against a cryptosystem.
Especially when “standard” cryptanalytic techniques are infeasible, a determined
attacker might find it much easier to obtain secret keys by hardware tampering,
or via theft, bribery, or similar means. The problem of key exposure becomes
more severe as cryptographic algorithms are increasingly used on inexpensive,
lightweight, and portable consumer devices.

Key evolution is a powerful defense against the threat of key exposure. As
an example, in a forward-secure scheme one’s secret key is updated at each time
period in such a way that key exposure during any time period compromises
only future time periods (but not past time periods). Forward security was first
formalized (in the context of signature and identification schemes) by Bellare
and Miner [2], building on earlier ideas of Anderson [1]; numerous constructions
of forward-secure signature schemes have been proposed (beginning with [2]). A
forward-secure public-key encryption scheme has been constructed recently by
Canetti, Halevi, and Katz [5].

Key-insulated cryptosystems [7, 3, 8] extend the key evolution paradigm to
further limit the damage from key exposure. As with forward security, the user
(e.g., a mobile device) can perform all cryptographic operations during any par-
ticular time period on his own. However, to update the user’s secret keys for
the next time period, the user needs the help of a “base” (e.g., a desktop PC



in the user’s home). Using this model, one may guarantee that exposure of the
user’s keys during multiple time periods only compromises security for those
specific time periods, and not for any other time periods either in the past or in
the future. A key-insulated scheme is additionally termed “strong” if there is no
security compromise when the adversary exposes the secrets stored on the base.

Intrusion-resilience (first proposed in the context of signature schemes by
Itkis and Reyzin [10]) is a synthesis of forward security and key-insulated se-
curity. The system model is as in the key-insulated case: the user performs
cryptographic operations on its own during each time period, and updates its
key for the next time period with the help of the base. Here, however, a stronger
security guarantee is provided. If the base and the user are exposed during the
same time period, then all prior time periods remain secure (as in the case of
forward security). Otherwise, repeated exposure of both the user and the base
only compromise those specific time periods during which the user’s secret keys
were exposed (as in the case of key-insulated security).

The security provided by intrusion-resilient schemes may be further enhanced
by allowing “refresh” operations between base and user in addition to “update”
operations. Both of these are key-evolving functions. The difference is that an
update operation is used only at the beginning of each time period, while any
number of refresh operations can occur within a single time period. Someone
who wants to interact with the user needs to know the current time period (i.e.,
number of update operations), but does not need to know how many refresh
operations have occurred within each time period. Frequent refresh operations
enhance security, since the attacker must expose user and base between refreshes
in order to compromise future security.

Itkis and Reyzin [10] gave a construction of intrusion-resilient signatures
based on the strong RSA assumption. Subsequently, Itkis [9] showed a generic
construction of intrusion-resilient signatures from any one-way function. The first
construction for intrusion-resilient public-key encryption is given in [6]. That
construction relies on a very specific assumption (the BDH assumption [4]),
and is based on the forward-secure encryption scheme of [5]. This raises the
natural question of what assumptions are sufficient to achieve intrusion-resilient
encryption. In this paper, we make progress on this question by presenting a
more generic construction for intrusion-resilient public key encryption based on
any forward-secure encryption scheme satisfying certain properties. In this sense,
our work generalizes the previous work [6] which constructs an intrusion-resilient
encryption schemes from a specific forward-secure scheme (i.e., that of [5]). It
is hoped that our more generic construction will highlight those properties that
enable intrusion-resilience and thus shed additional light on this primitive.

Indeed, the scheme in [6] is somewhat complicated and hard to parse. In
particular, one has to be extremely careful when defining the order of operations
in that scheme, it is not immediately really clear what specific properties of the
forward-secure scheme of [5] are critically used, and, overall, what is the high
level intuition behind that construction. This paper tries to clarify this point by
presenting a more generic construction of intrusion-resilient encryption which



clearly explains which special properties of the scheme of [5] are used. Specifi-
cally, we isolate two such crucial properties: a homomorphic structure of the key
updating operation, and, more importantly, “separability” between the user’s
key material used for updating from that used for the actual decryption. Indeed,
we will argue that without such separability it seems impossible (or very hard)
to build an intrusion-resilient encryption scheme from a forward-secure scheme.
For that reason, we also give a new, refined definition of forward-secure encryp-
tion which explicitly models this key separability, and argue that the scheme
in [5] meets our definition. Then, we give a clean and intuitive construction
of intrusion-resilient encryption from any such refined forward-secure encryp-
tion with an extra homomorphic property for key updating. Of course, since
presently there exists only one specific forward-secure encryption of [5], we can
currently instantiate our scheme in only one way — the one given in [6] — but
our exposition hopefully clarifies and explains the design criteria for constructing
intrusion-resilient encryption. In particular, shall a new forward-secure scheme
be found, our construction pin-points the two natural extra properties which
are needed to turn it into an intrusion-resilient scheme (from the same assump-
tion). And since we argue that such extra properties also seem to be necessary,
our work motivates the design of future forward-secure schemes which satisfy
them as well. Thus, we believe that our generally will clarify and simplify future
designs of both forward-secure and intrusion-resilient schemes.

As an additional contribution, we explore a number of alternative models
and definitions for both forward-secure and intrusion-resilient encryption in Sec-
tions 2 and 3. Our generic construction appears in Section 4, and Section 5
contains the proof of security.

2 Forward-Secure Encryption

Our intrusion-resilient scheme is built from a forward-secure encryption scheme.
The notation and model borrows from that of [5], slightly adapted for our pur-
poses. We let N be the set of positive integers and let [T ] = {1, 2, . . . , T}.

2.1 Functional Description

We assume a key-evolving encryption scheme in which the user’s secret key can
be “divided” into two components: an update key and a local key. An update key
is used only to generate the update key and local key of the next time period,
but is not used to decrypt a ciphertext. On the other hand, a local key is used
only to decrypt a ciphertext in the corresponding time period, but is not used
to generate the update key or local key for the next time period. Note that the
forward-secure encryption scheme of [5] may be viewed in this way.

More formally, we specify a key-evolving encryption scheme (with the above-
mentioned property) by the following tuple of polynomial-time algorithms:

fsKeyGen: key generation algorithm
Input: security parameter k, number of time periods T
Output: initial user key sk0, public key pk



fsKeyUpd: key-update algorithm
Input: current user update key skt and time period t
Output: next user update key skt+1 and next user local key lskt+1

fsEnc: randomized encryption algorithm
Input: user public key pk, current time period t, message M
Output: ciphertext C

fsDec: decryption algorithm
Input: user local secret key lskt, ciphertext C = fsEnc(pk, t, M)
Output: message M

The initial user update key sk0 is not actually used or stored (instead, fsKeyUpd
is applied immediately to generate sk1 and lsk1). Therefore, the sets of keys
which an adversary can access are defined as follows:

sk
∗

= {skt|1 ≤ t ≤ T } and lsk
∗

= {lskt|1 ≤ t ≤ T }.

Remark: Note that in the definition of [5], a single secret key is used both for
updates and for decryption (instead of having separate keys for updates and
decryption, as above). We call such a scheme a primitive key-evolving scheme. A
primitive scheme which is forward-secure is called a PFSE scheme, to distinguish
it from forward-secure schemes which can additionally be cast as per the above
definition (these are called FSE schemes).

2.2 Definition of Security

We now provide a definition of forward security for a key-evolving encryption
scheme as defined in the previous section. Our definition is stronger than than
the definition given in [5] in that we allow the adversary to obtain the local key
(but not the update key) for time periods prior to the challenge time period.
Formally, we accomplish this by giving the adversary access to two separate
oracles: one of which returns local keys, and one of which returns update keys.
Although this is a stronger definition than that given previously, note that the
scheme of [5] satisfies it.

Let A be a probabilistic polynomial-time oracle Turing machine, which gets
input pk and T , and interacts with the following oracles:

• Decryption oracle OFSDec(sk0, ·, ·), which on input t ∈ [T ] and a ciphertext
C outputs a message M decrypted by lskt (where this key is derived in the
appropriate way from sk0).

• Update-key oracle OFSukey(sk0, ·), which on input t ∈ [T ] outputs skt (again,
this key is derived in the appropriate way from sk0).

• Local-key oracle OFSlkey(sk0, ·), which on input t ∈ [T ] outputs lskt (again,
this key is derived in the appropriate way from sk0).

• Left-or-right oracle OFSLR(pk, ·, LRb(·, ·)) which on inputs t∗ ∈ [T ] and equal-
length messages m0, m1 returns a challenge ciphertext C∗ ← fsEnc(pk, t∗, mb).
The bit b is chosen randomly at the outset of the experiment.



The adversary A may query all oracles adaptively, in any order it wants,
subject to the following restrictions: queries t to OFSukey satisfy t > t∗; queries
t′ to OFSlkey satisfy t′ 6= t∗; only a single query is made to OFSLR; and the
ciphertext C∗ received from OFSLR may not be queried to OFSDec for time
period t∗. Eventually, the adversary guesses a bit b′ and halts. The adversary
succeeds if b′ = b. We define the adversary’s advantage as the absolute value of
the difference between its success probability and 1/2.

Definition 1. We say that a key-evolving encryption scheme FSE is forward
secure against chosen-ciphertext attacks (FS-CCA) if the advantage of any ppt

adversary A in the above experiment is negligible.

Remark: We stress that separating the two oracles OFSukey and OFSlkey strength-
ens the notion of forward security as compared to [5]. Specifically, our model
allows an adversary to get the local key corresponding to any t′ 6= t∗.

3 Intrusion-Resilient Encryption

As mentioned in the introduction, intrusion-resilient encryption schemes achieve
a stronger level of security than forward-secure encryption schemes, at the cost
of introducing a second entity (i.e., the base). Our definition of security follows
[10, 6]. An adversary is allowed an adaptive chosen-ciphertext attack, can addi-
tionally obtain the secrets from the base and/or the user, and can eavesdrop on
the communication between the base and user. As long as the user, the base,
and the communication between user and base are not compromised at the same
time period, the scheme remains secure for all time periods at which the user’s
key was not exposed. Furthermore, the scheme achieves forward security in case
the user, base, and communication between user and base are compromised at
the same time period. We now provide formal definitions.

3.1 Functional Description

The encryption scheme is specified by the following tuple of polynomial-time
algorithms:

KeyGen: key generation algorithm
Input: security parameter k, number of time periods T , number of refreshes R
Output: initial user key sk0.0, initial base key skb0.0, public key pk

BaseUpd: base key-update algorithm
Input: current base key skbt.r

Output: next base key skbt+1.0, key update message skut

UserUpd: user key-update algorithm
Input: current user key skt.r, key update message skut

Output: next user key skt+1.0



BaseRef: base key-refresh algorithm
Input: current base key skbt.r

Output: next base key skbt.r+1, corresponding key refresh message skrt.r

UserRef: user key-refresh algorithm
Input: current user key skt.r, key refresh message skrt.r

Output: next user key skt.r+1

Enc: randomized encryption algorithm
Input: user public key pk, current time interval t, message M
Output: ciphertext C

Dec: decryption algorithm
Input: user secret key skt.r, ciphertext C = Enc(pk, t, M)
Output: message M

The encryption scheme is run as follows:

Syntactic(k, T, R)

Set (sk0.0, skb0.0, pk)← KeyGen(k, T, R).

For t = 0 to T − 1:

Set (skbt+1.0, skut)← BaseUpd(skbt.r) and skt+1.0 ← UserUpd(skt.r , skut).

For r = 0 to R− 1

Set (skbt.r+1, skrt.r)← BaseRef(skbt.r) and skt.r+1 ← UserRef(skt.r, skrt.r).

Here the keys skt,0 and skbt,0 for 0 ≤ t ≤ T are not actually used or stored. Key
generation is immediately followed by an update, and each update is immedi-
ately followed by a refresh. Therefore, the secret keys which an adversary can
potentially access are defined as follows:

• sk∗ = {skt.r|1 ≤ t ≤ T, 1 ≤ r ≤ R}
• skb∗ = {skbt.r|1 ≤ t ≤ T, 1 ≤ r ≤ R}
• sku∗ = {skut|1 ≤ t ≤ T − 1}
• skr∗ = {skrt.r|1 ≤ t ≤ T − 1, 0 ≤ r ≤ R − 1} \ {skr1.0}

3.2 Definition of Security

We now define intrusion-resilience. Let A be a probabilistic polynomial-time
oracle Turing machine which gets input pk, T , and R, and which may query the
following oracles (each oracle is technically indexed by an initial tuple of keys
(sk0.0, skb0.0, pk) which is omitted for readability):

• Decryption oracle ODec, which on input t ∈ [T ], r ∈ [R], and a ciphertext C
outputs a message M decrypted using skt.r

• User key oracle Osk, which on input t ∈ [T ] and r ∈ [R] outputs skt.r

• Base key oracle Obk, which on input t ∈ [T ] and r ∈ [R] outputs skbt.r

• Key update oracle Ou, which on input t ∈ [T ] outputs skut

• Key refresh oracle Or, which on input t ∈ [T ] and r ∈ [R] outputs skrt.r



• Left-or-right oracle OLR, which on input t∗ ∈ [T ] and equal-length messages
m0, m1, outputs challenge ciphertext C∗ ← Enc(pk, t∗, mb) (for a bit b which is
chosen at random at the beginning of the experiment).

The oracles Osk, Obk, Ou and Or are generically called “key exposure oracles”,
and are denoted by Osec. Queries to a particular oracle are indicated by including
the appropriate string; thus, Osec(“sk”, t.r) denotes the query Osk(t, r).

The only restrictions for the adversary’s queries are that key exposures must
respect erasure. That is, if a value corresponding to a particular instant in time
t1 has been obtained by the adversary (via an oracle query), then a value corre-
sponding to a prior instant in time (which would have been erased prior to t1)
cannot be obtained. More formally,

⋄ (“sk”, t.r) must be queried before (“sk”, t′.r′) if t′ > t or t′ = t and r′ > r;
⋄ (“bk”, t.r) must be queried before (“bk”, t′.r′) if t′ > t or t′ = t and r′ > r;
⋄ (“bk”, t.r) must be queried before (“r”, t′.r′) if t′ > t or t′ = t and r′ ≥ r;
⋄ (“bk”, t.r) must be queried before (“u”, t′) if t′ ≥ t.

For a set Q of key exposure queries, we say that skt.r is Q-exposed if on of the
following is true:

– (“sk”, t.r) ∈ Q;
– r > 1, (“r”, t.(r − 1)) ∈ Q, and skt.(r−1) is Q-exposed;
– r = 1, (“u”, t− 1) ∈ Q, and sk(t−1).R is Q-exposed;
– r < R, (“r”, t.r) ∈ Q, and skt.r+1 is Q-exposed.

A completely analogous definition may be given for Q-exposure of a base key
skbt.r. We say the scheme is (t∗, Q)-compromised if skt∗.r is Q-exposed (for some
r), or if both skt′.r and skbt′.r are Q-exposed (for some r and t′ < t∗).

We say that an adversary succeeds if it correctly guesses the bit b used by the
OLR oracle, subject to the following restrictions: (1) The system was not (t∗, Q)-
compromised where OLR was queried at time period t∗; and (2) The ciphertext
C∗ returned by OLR was not queried to ODec (for the same time period t∗). An
adversary’s advantage is defined as the absolute value of the difference between
its success probability and 1/2.

Definition 2. We say that an encryption scheme is intrusion-resilient against
chosen-ciphertext attacks (IR-CCA) if the advantage of any ppt adversary A in
the above experiment in negligible.

Remark: We sometimes refer to the notion defined above as “full” intrusion
resilience. In Appendix A, we define a security notion called quasi-intrusion re-
silience which lies “in between” key-insulated security and full intrusion-resilience.
This intermediate notion helps describe the security level which is achieved by
using a primitive key-evolving encryption scheme.

4 A Generic Construction of Intrusion-Resilient

Encryption

In this section, we present a generic construction of a fully intrusion-resilient
encryption scheme from



4.1 Preparations

a forward secure encryption scheme whose key-update algorithm is homomorphic
in the sense we now describe. Assume a map

φ : G1 → G2 ×G3,

where G1, G2, and G3 are groups represented additively. We say that the map
φ is homomorphic if for all x, y ∈ G1 we have:

φ(x + y) = φ(x) + φ(y).

More precisely, φ satisfies

φ(x + y) = (x1 + y1, x2 + y2)

where φ(x) = (x1, x2) and φ(y) = (y1, y2).
To give a generic construction of fully intrusion resilient scheme, we specify

the key-evolving encryption scheme FSE as generally as possible. Let S1 be a set,
and let G1, G2, and G3 be groups (written additively). Let FSE be as follows:

FSE = (fsKeyGen, fsKeyUpd, fsEnc, fsDec):

• fsKeyGen: {0, 1}∗ × N→ G1 × S1; fsKeyGen(k, T )=(sk0, pk)

• fsKeyUpd : G1 → G1 ×G2; fsKeyUpd(skt) = (skt+1, lskt+1)
Additionally, fsKeyUpd should be homomorphic; that is:

fsKeyUpd(x + y) = fsKeyUpd(x) + fsKeyUpd(y).

In other words, it satisfies:

fsKeyUpd(x + y) = (x1 + y1, x2 + y2),

where fsKeyUpd(x) = (x1, x2) and fsKeyUpd(y) = (y1, y2).

• fsEnc : S1 × N× {0, 1}n → {0, 1}n; fsEnc(pk, t, M) = C

• fsDec : G2 × {0, 1}n → {0, 1}n; fsDec(lskt, C) = M

4.2 Scheme Intuition

As intuition for our construction, we may note that a secret key of encryption
scheme FSE consists of skt and lskt, where the local key lskt is used only for
decryption. We may notice that a user update key skt of FSE enables derivation
of all the user secret keys for periods t through N , but none of the secret keys for
periods t′ < t. This will allow us to achieve forward security, as in [5]. However,
in our model we also need to divide the user update key between the user and
the base, so that we can derive the sharing for period t + 1 from that of period
t and achieve future security also. To achieve this, we let the user store lskt —
to enable decryption within the current time period — but additively share the
user update key skt between the user and the base. In summary, let the user



store lskt and the evolved share of skt, and the base store the other evolved
share of skt. Intuitively, lskt by itself only allows the user to decrypt at period
t, and the fact that the user update key skt is split ensures that exposure of the
user cannot compromise any of the future periods. Security against compromises
of the base follows similarly. This gives us intrusion-resilience.

The only issue to resolve is how to update a local key by using the separated
shares of an update key. Both shares of the user and the base are evolved in each
time period, which are executed independently by the user and the base. When
each share is evolved by using the key-update algorithm of FSE, the algorithm
outputs two elements: the sharing of the next-time-period update key and the
sharing of the next-time-period local key. The base sends only the sharing of a
local key to the user as the update message, and the user combines it with his
own sharing of the local key by using the homomorphic property of the key-
update algorithm; thus, the user derives the the next-time-period local key. As
a result, the user and the base generate their own update keys independently
and compute the next-time-period local key jointly. This step is immediately
followed by a random refresh.

4.3 FISER

We now describe the fully intrusion-resilient encryption scheme FISER= (KeyGen,
BaseUpd, UserUpd, BaseRef, UserRef, Enc, Dec). Let us note that each param-
eter is defined on the following set or groups:

⋄ set of user public keys :S1

⋄ group of user secret keys :G3 = G1 ×G2

⋄ group of base secret keys :G1

⋄ group of key update message :G3 = G1 ×G2

⋄ group of key refresh message :G1

Using the above notation, each function is described as follows:

KeyGen: {0, 1}∗ × N→ G3 ×G1 × S1; KeyGen(k, T )=(sk0.0, skb0.0, pk)
1. Compute (sk0, pk) ← fsKeyGen(k, T ).
2. Let sk0 be divided in sk0 = sks0.0 +skb0.0 for randomly chosen sks0.0 ∈ G1

3. Set pk = pk, sk0.0 = (sks0.0, ·), and skb0.0 = skb0.0,
4. Output sk0.0, skb0.0, and pk.

BaseUpd: G1 → G1 ×G2; BaseUpd(skbt.r) = (skbt+1.0, skut)
For an input of base secret key skbt.r = skbt.r

1. Compute (skbt+1.0, skut)← fsKeyUpd(skbt.r).
2. Output skbt+1.0 = skbt+1.0 and skut.

UserUpd: G3 ×G2 → G3; UserUpd(skt.r, skut) = skt+1.0

For inputs of user secret key skt.r = (skst.r, lskt) and update message skut

1. Compute (skst+1.0, lskt+1)← fsKeyUpd(skst.r).
2. Compute lskt+1 = lskt+1 + skut.
3. Output skt+1.0 = (skst+1.0, lskt+1).

BaseRef: G1 → G1 ×G1; BaseRef(skbt.r) = (skbt.r+1, skrt.r)
For an input of base secret key skbt.r = skbt.r,



1. Compute skbt.r+1 = skbt.r −Rt.r for a random secret Rt.r ∈ G1.
2. Output skbt.r+1 = skbt.r+1 and skrt.r = Rt.r.

UserRef: G3 ×G1 → G3; UserRef(skt.r, skrt.r) = skt.r+1

For inputs of user secret key skt.r = (skst.r, lskt) and refresh message
skrt.r = Rt.r,

1. Compute skst.r+1 = skst.r + Rt.r.
2. Output skt.r+1 = (skst.r+1, lskt).

Enc: S2 × N× {0, 1}n → {0, 1}n; Enc(pk, t, M) = C
For inputs of a public key pk, time t, and a message M ,
1. Compute C ← fsEnc(pk, t, M).
2. Output C.

Dec: G3 × {0, 1}n → {0, 1}n; Dec(skst, C) = M
For inputs of user secret key skt.r = (skst.r, lskt) and ciphertext C,
1. Compute M ← fsDec(lkst, C).
2. Output M .

5 Security Analysis

We now prove security of the FISER given above. For simplicity, the time com-
plexity of an adversary A is defined as the execution time of the experiment
used to define the advantage of A, including the time taken for key generation
and initialization, as well as the time required for the various oracles to compute
replies to the adversary’s queries.

Theorem 1. Let A be an adversary of time complexity τ with at most Q queries
to oracles O ∈ {ODec, Osec, OLR} against FISER. If A has advantage δ, then
there exists an adversary B performing a chosen-ciphertext attack against the
underlying FSE with at least the same advantage. The time complexity of B is at
most τ + O(log k), and the number of queries is at most Q.

Proof. We construct an adversary B that uses A to perform a chosen-ciphertext-
and-key attack against FSE. B is allowed to ask queries to: a decryption oracle
OFSDec(·, pk, skt.r, ·); a user update-key oracle OFSukey(pk, sk0, ·); a user local-
key oracle OFSlkey(pk, sk0, ·); and a left-or-right oracle OFSLR(pk, ·, LR(·, ·, b)).
Adversary B receives challenge ciphertext C∗ = fsEnc(pk, t∗, mb), and outputs
a guess b′. Adversary B succeeds if b′ = b.

B simulates A’s environment as follows: first, B runs A until A outputs T and
R ∈ N. B also returns T . B runs fsKeyGen(k, T ) to produce (sk0, pk). B chooses
skb0.0 ∈ G1 randomly and maintains a list U list

1 , which consists of tuples of the
following form:

(t, r; skst.r, skbt.r, Rt.r) ∈ N× N×G1 ×G1 ×G1.

We use the notation (t, r; skst.r,−, ∗) as follows: “−” is used if there is no list
on skbt.r, i.e. empty , and “*” is used if we don’t care about Rt.r like empty



or not, or if we maintain the data after some operating. For example, “change
(t, r; ∗, ∗,−) to (t, r; ∗, ∗, Rt.r)” means that: change the data “-” to Rt.r while
maintaining the data of skst.r and skbt.r as they are.

To begin, B sets pk = pk and U list
1 = {(0, 0;−, skb0.0,−)} and continues the

execution of A on input pk using its oracles to respond A’s queries as follows:

Decryption oracle. Let a query to ODec(·, ·, pk, skt.r, ·) be (t, r, C). B forwards
(t, C) to its decryption oracle OFSDec(·, pk, sk0, ·), and returns the answer M to
A. From the definition of ODec, the answer is exactly what A’s decryption oracle
would have answered.

Base key oracle. Let a query to Obk(skb0.0, pk, ·, ·) be (t, r). B conducts the
following steps.

1. If there is (t, r; ∗, skbt.r, ∗) in U list
1 , then pick skbt.r from U list

1 .
2. Else if there is (t, r; skst.r,−, ∗) in U list

1 , which means exactly “simultaneous
attack”, then forward t to its user update-key oracle OFSukey , get the answer
skt, compute

skbt.r = skt − skst.r,

and renew U list
1 by using (t, r; skst.r, skbt.r, ∗) instead of (t, r; skst.r,−, ∗).

3. Else if r > 1 and there is (t, r− 1; ∗, skbt.r−1, Rt.r−1) in U list
1 , then compute

skbt.r = skbt.r−1 −Rt.r−1

and renew U list
1 by using (t, r; ∗, skbt.r, ∗).

4. Otherwise, choose skbt.r ∈ G1 randomly and renew U list
1 using (t, r;−, skbt.r, ∗)

in U list
1 .

5. Finally B returns skbt.r to A.

Since skbt.r was exactly what A’s base key oracle would have answered, A’s
view is identical to its view in the attack against FISER.

User key oracle. Let a query to Osk(sk0.0, pk, ·, ·) be (t, r). B conducts the
following steps.

1. If there is (t, r; skst.r, ∗, ∗) in U list
1 , then pick skst.r from U list

1 .
2. Else if there is (t, r;−, skbt.r, ∗) in U list

1 , which means exactly “simultaneous
attack”, then forward t to its user update key oracle OFSukey , get the answer
skt, compute

skst.r = skt − skbt.r,

and renew U list
1 by using (t, r; skst.r, skbt.r, ∗).

3. Else if r > 1 and there is (t, r; skst.r−1, ∗, Rt.r−1) in U list
1 , then compute

skst.r = skst.r−1 + Rt.r−1

and renew U list
1 by using (t, r; skst.r,−, ∗).

4. Otherwise, choose skst.r ∈ G1 randomly and renew U list
1 using (t, r; skst.r,−, ∗).

5. Finally B returns skst.r to A.



Since skst.r was exactly what A’s user key oracle would have answered, A’s
view is identical to its view in the attack against FISER.

Refresh oracle. Let a query to Or(skb0.0, pk, ·, ·) be (t, r). B conducts the
following steps.

1. If there is (t, r; ∗, ∗, Rt.r) in U list
1 , then pick Rt.r from U list

1 .

2. Else if either of the following are in U list
1 :

{(t, r; skst.r, ∗,−), (t, r; skst.r+1, ∗,−)}

or

{(t, r; ∗, skbt.r, ∗), (t, r; ∗, skbt.r+1, ∗)},

then compute

Rt.r = skst.r+1 − skst.r or Rt.r = skbt.r − skbt.r+1,

and renew U list
1 by using (t, r; skst.r, ∗, Rt.r) or (t, r; ∗, skbt.r, Rt.r), respec-

tively.

3. Otherwise, choose Rt.r ∈ G1 randomly and renew U list
1 using (t, r; ∗, ∗, Rt.r).

4. Finally B returns Rt.r to A.

Since Rt.r was exactly what A’s refresh oracle would have answered, A’s view
is identical to its view in the attack against FISER.

Update oracle. Let a query to Ou(skb0,0, pk, ·) be t. B does as follows:

1. If there is (t, R; ∗, skbt.R, ∗) in U list
1 , then compute

(skbt+1.0, skut)← fsKeyUpd(skbt.R).

2. Else if there is (t, R; skst.R,−, ∗) in U list
1 , forward t+1 to its local-key oracle

OFSlkey(pk, sk0, ·), obtain the answer lskt+1, and compute

(skst+1.0, lskt+1)← fsKeyUpd(skst.R) and

skut = lskt+1 − lskt+1.

3. Otherwise, choose randomly skst.R ∈ G1, forward t+1 to its local-key oracle
OFSlkey(pk, sk0, ·), obtain the answer lskt+1, compute

(skst+1.0, lskt+1)← fsKeyUpd(skst.R) and

skut = lskt+1 − lskt+1,

and renew U list
1 by using (t, r; skst.R,−, ∗).

4. Finally B returns skut to A.



Since skut was exactly what A’s update key oracle would have answered, A’s
view is identical to its view in the attack against FISER.

Left-or-right oracle. Let a query to OLR(pk, ·, LR(·, ·, b)) be (t∗, m0, m1). Then
B forwards (t∗, m0, m1) to its left-or-right oracle OFSLR(pk, ·, LR(·, ·, b)), obtains
a ciphertext C∗, and returns C∗ to A. From the definition of Enc, the answer is
exactly what A’s left-or-right oracle would have answered.

When A outputs its guess bit b′ and halts, B returns b′ and halts. Note that even
if A makes queries to more than one oracle O ∈ Osec for the same time/refresh
period (t, r), adversary A does not see any inconsistencies among the answers
from these oracle queries unless the scheme becomes (t∗, Q)-compromised (where
Q represents the queries of A to Osec up to and including that point in time);
this assumes that A is respects erasure. Furthermore, B queries OFSukey if and
only if A queries both Osk and Obk for the same time/refresh period (t, r). That
is, the earliest time period queried to both Osk and Obk simultaneously by A
is coincident with that time period submitted to OFSukey by B. Therefore B
succeeds whenever A does.

From the above simulation by B, we see that the time complexity of B is at
most τ + log k and that B makes at most Q queries to its oracles.

6 Further Discussion

There are several security notions of key-evolving or key-updating encryption
schemes: forward-secure encryption as defined by [5] (called PFSE), forward-
secure encryption (FSE) as defined here (recall, in our model the secret key
is split into a key used for decryption and a key used for updates), key-insulated
encryption [7], and intrusion-resilient encryption [6]. These notions and the no-
tion of ID-based encryption (IBE) [4] are related; this has already been noted in
[7, 3, 8]. We summarize the relation here.

Any secure ID-based encryption scheme IBE with a certain homomorphic
property can be transformed to achieve key-insulated security, following [3].1

We denote this construction by by KIS. Unfortunately, this scheme is insecure
in case both user and base are corrupted (indeed, the scheme was not designed
with this security property in mind).

Our results shows that FSE with a certain homomorphic property is sufficient
to achieve intrusion resilience. Then, we may raise the natural question as to
whether a generic PFSE scheme can be transformed to achieve intrusion resilience.
Unfortunately, the answer seems to be “no” in general (at least using a “simple”
construction as shown here) even if we assume that the key-update algorithm
is appropriately homomorphic. More formally, any PFSE scheme which can be
converted in this way can actually be cast as an FSE scheme anyway. We briefly
discuss why. Intuitively, both the user and the base must share the secret key

1 The construction in [3] is based on the Boneh-Franklin ID-based encryption
scheme [4], but may be extended to use any ID-based encryption scheme with a
certain homomorphic property.



of the PFSE scheme in order to achieve intrusion resilience. This requires that
no single entity can have enough control to cause any security concerns. On
the other hand, the user needs to decrypt a ciphertext. This indicates some
separation between keys used for decryption and keys used for key updates.
It would be interesting to formalize and rigorously prove the above informal
reasoning.

This may raise another question of what level of security is achieved by using
PFSE. We show that any primitive forward secure encryption scheme together
with any secure ID-based encryption scheme that satisfies a certain homomorphic
property can be transformed to achieve quasi-intrusion-resilience in Appendix B.
The construction is called QISER, and the definition of quasi-intrusion-resilience
is given in Appendix A. These abstraction of each security notion is shown in
Table 1.

Remark: The Boneh-Franklin ID-based encryption scheme satisfies the necessary
homomorphic property. Therefore, a forward-secure encryption scheme (e.g., [5])
combined with this IBE scheme satisfies quasi-intrusion-resilience.

Table 1. Abstraction of each security notion

underlying notion achieved security level

KIS[3] IBE key-insulated

QISER PFSE + IBE quasi-intrusion-resilient

FISER FSE intrusion-resilient

References

1. R. Anderson. “Two remarks on public-key cryptol-
ogy.” Invited Lecture, ACM-CCCS ’97. Available at
http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf.

2. M. Bellare and S. K. Miner. “A forward-secure digital signature scheme.” Advances

in Cryptology — Crypto ’99, LNCS vol. 1666, Springer-Verlag, 1999.
3. M. Bellare, and A. Palacio. “Protecting against key exposure:

strongly key-insulated encryption with optimal threshold.” Available at
http://eprint.iacr.org.

4. D. Boneh and M. Franklin. “Identity based encryption from the Weil pair-
ing.” Advances in Cryptology — Crypto 2001, LNCS vol. 2139, Springer-
Verlag, 2001. Full version to appear in SIAM J. Computing and available at
http://eprint.iacr.org/2001/090.

5. R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption
scheme.” Advances in Cryptology — Eurocrypt 2003, LNCS vol. 2656, Springer-
Verlag, 2003.

6. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. “Intrusion-resilient public-
key encryption.” RSA — Cryptographers’ Track 2003, LNCS 2612, Springer-Verlag,
2003.



7. Y. Dodis, J. Katz, S. Xu, and M. Yung. “Key-insulated public-key cryptosystems.”
Advances in Cryptology — Eurocrypt 2002, LNCS vol. 2332, Springer-Verlag, 2002.

8. Y. Dodis, J. Katz, S. Xu, and M. Yung. “Strong key-insulated signature schemes.”
Public Key Cryptography 2003, LNCS vol. 2567, Springer-Verlag, 2003.

9. G. Itkis. “Intrusion-resilient signatures: generic constructions; or defeating a strong
adversary with minimal assumptions.” Security in Communication Networks 2003,
LNCS vol. 2576, Springer-Verlag, 2002.

10. G. Itkis and L. Reyzin. “SiBIR: signer-base intrusion-resilient signatures.” Ad-

vances in Cryptology — Crypto 2002, LNCS, vol. 2442, Springer-Verlag, 2002.

A Definition of Quasi-Intrusion Resilience

We introduce the notion of quasi intrusion resilience, which lies “in-between” key-
insulated security and intrusion resilience. Informally, the security obtained is as
follows: corrupting both the base and the user at the same time period means
that any period before the first user corruption is secure; otherwise, repeated
exposure of the user and the base only compromises those specific time periods
during which the user’s secret keys were exposed.

We generalize the notion of (t0, Q)-compromise from Section 3.2 by con-
sidering two disjoint scenarios, simultaneous and non-simultaneous corruption.
We call a corruption simultaneous if both user and base were compromised
for the same time period and refresh period; otherwise we call the corruption
non-simultaneous. More formally, we say the scheme is (t0, Q)-simultaneous-
compromised if one of the following is true:

– skt0.r is Q-exposed (for some r); or
– both skt′.r and skbt′.r are Q-exposed (for some t′ and r).

We say the scheme is (t0, Q)-non-simultaneous-compromised if:

– skt0.r is Q-exposed (for some r); or
– both skt′.r and skbt′.r are Q-exposed (for some r and t′ < t0); or
– both skt′.r and skbt′.r are never both Q-exposed (for any r and t′ > t0).

One can consider definitions in which (t0, Q)-simultaneous-compromise is disal-
lowed, or in which (t0, Q)-non-simultaneous-compromise is disallowed. A scheme
secure against any adversary who does not (t0, Q)-simultaneous-compromise
the system is called non-simultaneous-compromise secure; the opposite case
gives a system which is simultaneous-compromise secure. Obviously, an encryp-
tion scheme is (fully) intrusion resilient if and only if it is both simultaneous-
compromise and non-simultaneous-compromise secure.

By slightly modifying the condition of (t0, Q)-non-simultaneous-compromised,
we may define a system as (t0, Q)-quasi-non-simultaneous-compromised if:

– skt.r is Q-exposed (for some r and t ≤ t0); or
– both skt′.r and skbt′.r are Q-exposed (for some r and t′ < t0); or
– both skt′.r and skbt′.r are never both Q-exposed (for any r and t′ > t0).



Let us define (t0, Q)-quasi-non-simultaneous-compromised and CCA1 variation
of intrusion-resilience as quasi-secure; that is, the adversary does not query after
receiving the challenge ciphertext c from OLR and the scheme is not (t0, Q)-
quasi-non-simultaneous-compromised. The notion of quasi-intrusion-resilience is
given as follows.

Definition 3. We say that a two-entity encryption scheme is quasi-intrusion-
resilient against chosen ciphertext attacks (QIR-CCA) if it is intrusion resilient
and also secure against quasi-non-simultaneous-compromise.

B Generic Quasi-Intrusion-Resilient Encryption

B.1 Preparations

Our idea is to combine a primitive forward-secure encryption scheme with a se-
cure ID-based encryption scheme, where key-extract algorithm has a homomorphic-
like property. Let us define a homomorphic-like property of map,

φ : G1 × S → G2,

where both G1 and G2 are groups and S is a set. The operation of G1 and G2

is represented additively, and S does not have to be a group. Then, we say that
the map φ has a homomorphic-like property if for all s1, s2 ∈ G1 and all t ∈ S

φ(s1 + s2, t) = φ(s1, t) + φ(s2, t).

Now we give a general construction of quasi-intrusion-resilient scheme. Let S2

and S3 be sets, which are used in PFSE. We do not require any group property
for PFSE. Let G4 and G5 be groups, which are used in IBE. The operations are
represented additively.

• PFSE = (pfsKeyGen, pfsKeyUpd, pfsEnc, pfsDec):
⋄ pfsKeyGen: {0, 1}∗ × N→ S3 × S2; pfsKeyGen(k, T )=(sk0, pk)
⋄ pfsKeyUpd : S3 → S3; pfsKeyUpd(skt) = skt+1

⋄ pfsEnc : S2 × N× {0, 1}n → {0, 1}n; pfsEnc(pk, t, M) = C
⋄ pfsDec : S3 × {0, 1}n → {0, 1}n; pfsDec(skt, C) = M

ID-based encryption consists of key-generation, key-extraction, encryption, and
decryption algorithms.
• IBE = (IBKeyGen, IBKeyExt, IBEnc, IBDec):
⋄ IBKeyGen: {0, 1}∗ → G4 ×G5; IBKeyGen(k)=(s0, pk1)
Input: security parameter k
Output: master secret s0, public key pk1

⋄ IBKeyExt: G4 × N→ G5; IBKeyExt(s0, t) = iskt

Input: user ID t and secret s0

Output: user secret key iskt

IBKeyExt has to satisfy a homomorphic-like property for G4 and G5:

IBKeyExt(s1 + s2, t) = IBKeyExt(s1, t) + IBKeyExt(s2, t).



⋄ IBEnc: G5 × N× {0, 1}n → {0, 1}n; IBEnc(pk1, t, M) = C
Input: public key pk1, user ID t, message M
Output: cipher text C

⋄ IBDec: G5 × {0, 1}n → {0, 1}n; IBDec(iskt, C) = M
Input: user secret key iskt, ciphertext C = IBEnc(pk1, t, M)
Output: message M

B.2 QISER

Let us describe the quasi-intrusion-secure encryption scheme QISER = (KeyGen,
BaseUpd, UserUpd, BaseRef, UserRef, Enc, Dec). Here, user secret keys, user
public keys, base secret keys, key update message, and key refresh message are
defined on the following sets or groups:

⋄ set of user public keys : S5 = S2 ×G5

⋄ set of user secret keys : S4 = S3 ×G4 ×G5

⋄ group of base secret keys : G4

⋄ group of key update message : G6 = G4 ×G5

⋄ group of key refresh message : G4

KeyGen: {0, 1}∗ × N→ S4 ×G4 × S5; KeyGen(k, T )=(sk0.0, skb0.0, pk)
For inputs of security parameter k and time T ,
1. Set (s0, pk1)← IBKeyGen(k) and isk0 ← IBKeyExt(s0, 0).
2. Let s0 be divided in s0 = sks0.0 + skb0.0 for randomly chosen sks0.0 ∈ G4

3. Compute (sk0, pk) ← pfsKeyGen(k, T ).
4. Set pk = (pk, pk1) and sk0.0 = (sk0, sks0.0, isk0).
5. Output sk0.0, skb0.0, and pk.

BaseUpd: G4 → G4 ×G6; BaseUpd(skbt.r) = (skbt+1.0, skut)
For an input of base secret key skbt.r,
1. Compute skbt+1.0 = skbt.r − lt for a random secret lt ∈ G4

2. Compute ut ← IBKeyExt(skbt+1.0, t + 1).
3. Output skbt+1.0 and skut = (lt, ut).

UserUpd: S4 ×G6 → S4; UserUpd(skt.r, skut) = skt+1.0

For inputs of user secret key skt.r = (skt, skst.r, iskt) and update message
skut = (lt, ut),

1. Compute skst+1.0 = skst.r + lt.
2. Compute iskt+1 = IBKeyExt(skst+1.0, t + 1) + ut.
3. Compute skt+1 ← pfsKeyUpd(skt).
4. Output skt+1.0 = (skt+1, skst+1.0, iskt+1).

BaseRef: G4 → G4 ×G4; BaseRef(skbt.r) = (skbt.r+1, skrt.r)
For an input of base secret key skbt.r,
1. Compute skbt.r+1 = skbt.r − lt.r for a random secret lt.r ∈ G4.
2. Output skbt.r+1 and skrt.r = lt.r.

UserRef: S4 ×G4 → S4; UserRef(skt.r, skrt.r) = skt.r+1

For inputs of user secret key skt.r = (skt, skst.r, iskt) and refresh message
skrt.r,



1. Compute skst.r+1 = skst.r + skrt.r.
2. Output skt.r+1 = (skt, skst.r+1, iskt).

Enc: S5 × N× {0, 1}n → {0, 1}n; Enc(pk, t, M) = C
For inputs of a public key pk, time t, and a message M ,
1. Compute C ← IBEnc(pk1, t, pfsEnc(pk, t, M)).
2. Output C.

Dec: S4 × {0, 1}n → {0, 1}n; Dec(skt.r, C) = M
For inputs of user secret key skt.r = (skt, skst.r, iskt.r) and a ciphertext C,
1. Compute M ← pfsDec(skt, IBDec(iskt.r, C)).
2. Output M .

B.3 Security Analysis

The following theorems will be proved in the final version.

Theorem 2. Let A be an adversary of time complexity τ with at most Q queries
to oracles O ∈ {ODec, Osec, OLR} against QISER. If A has non-negligible ad-
vantage under non-simultaneous compromise, then there exists an adversary B
performing a chosen ciphertext attack against the underlying IBE with at least
the same advantage. The time complexity of B is at most τ + O(log k), and the
number of queries is at most Q.

Theorem 3. Let A be an adversary of time complexity τ with at most Q queries
to oracles O ∈ {ODec, Osec, OLR} against QISER. If A has non-negligible advan-
tage under quasi-non-simultaneous-compromise, then there exists an adversary
B performing a chosen ciphertext attack against the underlying PFSE with at
least the same advantage. The time complexity of B is at most τ +O(log k), and
the number of queries is at most Q.


