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The development of the theory and construction of combinatorial designs originated
with the work of Euler on Latin squares. A Latin square onn symbolsisann x n matrix
(n isthe order of the Latin square), in which each symbol occurs precisely oncein each
row and in each column. Severa interesting research questions posed by Euler with
respect to Latin squares, namely regarding orthogonality properties, were only solved
in 1959 [3]. Many other questions concerning Latin squares constructions still remain
open today.

From the perspective of the Constraint Programing (CP), Artificial Intelligence (Al),
and Operations Research (OR) communities, combinatorial design problems are inter-
esting since they possess rich structural properties that are also observed in real-world
applications such as scheduling, timetabling, and error correcting codes. Thus, the area
of combinatorial designs has been a good source of challenge problems for these re-
search communities. In fact, the study of combinatorial design problem instances has
pushed the devel opment of new search methods both in terms of systematic and stochas-
tic procedures. For example, the question of the existence and non-existence of certain
quasigroups (L atin squares) with intricate mathematical propertiesgivesrise to some of
the most challenging search problemsin the context of automated theorem proving[16].
So-called general purpose model generation programs, used to prove theoremsin finite
domains, or to produce counterexamples to false conjectures, have been used to solve
numerous previously open problems about the existence of Latin squares with specific
mathematical properties. Considerable progress has also been made in the understand-
ing of symmetry breaking procedures using benchmark problems based on combinato-
rial designs[5, 6,9, 13]. More recently, the study of search procedures on benchmarks
based on Latin squares has led to the discovery of the non-standard probability distri-
butions that characterize complete (randomized) backtrack search methods, so-called
heavy-tailed distributions [8].

In this paper we study search procedures for the generation of spatially balanced
Latin sguares. This problem arises in the design of scientific experiments. For example,
in agronomic field experiments, one has to test and compare different soil treatments.
Two different soil treatments may correspond to two different fertilizers or two dif-
ferent ways of preparing the soil. Most agronomic field experiments are implemented
through randomized complete block designhs (RCBD) where each block has as many
experimental units as treatments [4]. Use of blocksisin most cases justified by spatial
variability in fields, and this layout is an attractive way to organize replications. This
approach to experimental design uses random allocation of treatments to plots, which
is used to ensure that a treatment is not continually favored or handicapped in succes-
sive replications by user bias or some extraneous source of variation [2]. Although this
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randomization approach is intuitively attractive, it has been shown to cause biases and
imprecision under most field conditions[15]. The reason for thisis that underlying soil
characteristics are typically non-random and show field trends, spatial autocorrelation,
or periodicity [14]. For example, fertility patterns in fields often exhibit high and low
areas due to, among others, erosion, drainage variability, and management history. The
classical randomization process does not explicitly account for such field patterns, and
many realizations of such RCBD designs may result in undesirable outcomes.

To address the limitations of the traditional RCBD designs, van Es and van Es [15]
proposed spatially balanced experimental designs that are inherently robust to non-
random field variability. This approach uses dummy indicators and the treatments are
randomly assigned to the indicators. In other words, treatments are randomly allocated
to optimized designs, rather than to plots. Such designs may be spatially-balanced com-
plete block designs or spatially-balanced Latin squares, the latter being a special case
of the former where the number of treatments equal the number of replications.

We report our preliminary results concerning the generation of spatially-balanced
Latin squares. In a spatially-balanced Latin square al pairs of symbols (treatments, in
agronomic terms) have the same total distance in the Latin square. The distance of two
symbols in a given row is the difference between the column indices of the symbols.
The existence of spatially-balanced L atin squaresis an open question in combinatorics,
and no polynomial time constructions for the generation of spatially-balanced Latin
squares have been found yet. Therefore, in order to get some insights into the structure
of spatially-balanced L atin squares we used general |ocal and complete search methods.
We discoveredthat local search methods do not scale well on thisdomain, failing to find
the global optimum for instances larger than order 6. This result was somehow surpris-
ing, especialy given that local search methods perform well on generating (regular)
Latin sguares. Note that generating spatially-balanced Latin squares is considerably
more difficult than generating regular Latin squares.® On the other hand, our results
with a CP based approach were very promising and we could generate totally spatially-
balanced Latin squares up to order 18. Furthermore the CP based models provided us
with interesting insights about the structure of this problem that allowed us to conjec-
ture the existence of polynomial time constructions for generating spatially-balanced
Latin squares. We are currently working on finding such efficient constructions.

The structure of the paper is as follows. In the next section we provide basic defi-
nitions. In section 2 we describe our simulated annealing approach and we present our
main CP based model. In section 3 we provide empirical results.

1 Preliminaries

Definition 1. [Latin square and conjugates] Given a hatural number n € IN, aLatin
square L on n symbols is an n x n matrix in which each of the n symbols occurs
exactly once in each row and in each column. We denote each element of L by /5,
i,j € {1,2,---,n}.nistheorder of the Latin square. Given a Latin square L of order
n, its row (column) conjugate R (C) is also a Latin square of order n, with symbols,
1,2,---,n. Each element r;; (c;;) of R (C) corresponds to the row (column) index of L
in which the symbol 7 occursin column (row) j.

L While the current state of the art of local search and backtrack search methods can easily gen-
erate Latin squares of order 100 or larger, the largest spatially-balanced Latin squares that we
can generate is 18, using considerably more sophisticated techniques. There are constructions
for generating Latin squares of arbitrary order. Our comparison considers only the generation
of Latin squares using local search or backtrack search methods.



Definition 2. [Row distance of a pair of symbols] Given a Latin square L, the dis-
tance of a pair of symbols (k,1) inrow ¢, denoted by d; (k, 1), is the absolute difference
of the column indices in which the symbols k& and [ appear in row i.

Definition 3. [Average distance of a pair of symbols in a Latin square] Given a
Latin sguare L, the average distance of a pair of symbols (k,1) in L is d(k,l) =
Yim1 di(k, 1) /n.

We make the following important observation:

Remark 1. GivenalLatinsquare L of order n € IN, the expected distance of any pair in
any row is 2L

Proof. (See [15]) When we denote the probability that a random pair has distance h
with P(h), the expected distanceis u = 3 7'_| hP(h). It holds P(h) = 2= and

— n(n-1)"
therefore, 11 = 2 (n I h2). Simplification yields u = ™£L.

Clearly, aLatin square L of order n € IN istotally spatially balanced if every pair

of symbols1 < k < I < n has an average distance d(k,[) = "T“ Consequently, we
define:

Definition 4. Given a natural number n_€ IN, a Totally Spatially Balanced Latin
Square (TBLS) isa Latin squareinwhich d(k, 1) = 21 V1<k<l<n.

Sincend(k,1) =", d;(k,1) € IN, it follows that:
Remark 2. If thereexistsa TBLS of order n, thenn mod 3 # 1.

Inthe following section, we present different computational approachesfor the gen-
eration of Totally Spatially Balanced Latin Squares. We refer to this problem as the
TBLS problem.

2 Totally Spatially Balanced L atin Square Models

2.1 Simulated Annealing

We started by developing a simulated annealing approach for the TBLS problem. Our
work borrows ideas from a successful simulated annealing approach for the Traveling
Tournament Problem [1].

Objective Function Given that we are interested in the research question of the
existence of Totally Spatially Balanced Latin Squares, our problem becomes a decision
problem. Therefore, we first relax some of its constraints and try to minimize the con-
straint violation. We relax both the balancedness and the Latin square constraints. In
case we cannot find a totally balanced Latin square, we would like to balance both the
worst case pair of symbolsaswell asthe average over all pairs. Therefore, we penalize

. = N
the unbalancedness of asquarewiththeterm, b:= 3=, ;o (d(k,1) — %4)".

The second term of the objective function penalizes asymbol if it occurs more than
oncein the same column. Denoting with f (¢) the number of timesthat symbol & occurs
in columny, the L atin square penalty isdefined as Is := }°, ; ., max{fi(i) — 1,0}.



Theoverall objectivethenisto minimizeb+ 3 s, whereby 3 isavariablefactor that
oscillates during the optimization. It allows usto guide the search towards or away from
the search region containing Latin squares. For more details on strategic oscillation we
refer the reader to [7, 1].

Neighborhood As with every local search technique, the other fundamental design
decision regards the neighborhood. We experimented with different neighborhoods,
finding that a rather simple type of moves gives smoother walks and results in bet-
ter performance than more complicated neighborhoods. In our approach, there is just
one simple move allowed: Swap a random pair of symbolsin a random row, whereby
we only consider such pairs that will result in a change in the number of Latin square
constraints that are fulfilled.?

2.2 Constraint Programming Approach

In our basic CP model every cell of our square is represented by a variable that takes
the symbols as values. We use an AllDifferent constraint [11] over al cellsin the same
column as well as al cells in the same row to ensure the Latin square requirement.
We also keep adual model in form of the row conjugate that is connected to the primal
model viachanneling constraintsfor the quasi-group completion problem [10, 12]. This
formulationis particularly advantageous given that by having the dual variables at hand
it becomes easier to select a“good” branching variable aswell as to perform symmetry
checks, aswe will see shortly. In order to enforce the balancedness of the Latin squares,
we introduce variables for the values d(k, 1) and enforce that they are equal to ("BL)

Variable Selection As with many discrete problems, it turns out that the selection
of the branching variable has a severe impact on the performance of our algorithm. For
Latin square type problems it has been suggested to use a strategy that minimizes the
options both in terms of the position as well as the value that is chosen. In our problem,
however, we must also be careful that we can detect unbalancedness very early in the
search. Therefore, we traverse the search space symbol by symbol by assigning awhole
column in the row conjugate before moving on to the next symbol. For a given symbol,
we then choose a row in which the chosen symbol has the fewest possible cells that it
can still be assigned to. Finally, we first choose the cell in the chosen row that belongs
to the column in which the symbol has the fewest possible cells | eft.

Symmetry Breaking In order to avoid that symmetric search regions are explored
repeatedly, we implemented Symmetry Breaking by Dominance Detection (SBDD)
(see [5,6]). According to our strategy for the variable selection, we try al different
mappings of symbols in the current search node to the symbols of the previously ex-
plored nodes. Given that mapping, using the dual model we can easily check in linear
time whether there exists a permutation of the rows such that the current search node
is dominated. However, since there exist n! different permutations of the symbols, this
symmetry check is rather costly. In order to reduce the computational effort, it isim-
portant to treat unassigned symbols implicitly, which gives great advantages especially
when comparing against previously expanded search nodes that are located high up in
the search tree. Still, symmetry breaking is expensive. In the following section we will
therefore evaluate whether this enhanced symmetry breaking procedure pays off.

Composition of TBL S We also developed avery promising strategy for generating
TBLS instances using as building blocks TBLS instances of smaller orders. Given a

2 We would like to thank an anonymous reviewer for suggesting this neighborhood!



TBLS instance of order n, our model generates TBL S instances of orders 2n (and 3n)
by making 1 (or 2) copies of the initial TBLS instance of order n, and appropriately
renaming the symbols of the copy (or 2 copies). In this approach we only manipulate
entire columns of the building blocks and therefore the number of variablesis reduced
to the number of columns of the composed TBLS. The domain of each variablein this
model corresponds to the different columns of the building blocks.

3 Computational Results

We now present preliminary computational results obtained with our implementations
of the local search as well as the constraint programming algorithm. The simulated
annealing approaches were implemented in C++ compiled with the gnu g++ compiler
version 3.2.2 on an Intel XEON 2.0 GHz CPU and 1.0 GB RAM. The CP approaches
were implemented using ILOG Solver 5.1 and the gnu g++ compiler version 2.91 on an
Intel Pentium 111 550 MHz CPU and 4.0 GB RAM.

Table 1 shows our
results for the two Order
approaches. Compar- 3|/5]|6]| 8 9 |11 | 12
ing the two CP vari- CPI - time 0.01{0.02(0.06 16.14| 241 - -

ants, the first (CPl) CPS-time 0.01|0.02|0.09(>300| - - -
using aninitialization LSO -time 0.01{0.01|0.36|79.56 | 153 334 | 883
of the first row and LSO-max.dev.| opt | opt | opt | 0.25 | 0.22 |0.36| 0.5
the second (CPS) us- LSO - av. dev. opt | opt | opt | 0.04 | 0.11 |0.16| 0.15
ing SBDD, we find LSN-time 0.01{0.01|0.03|32.03 [60.95 (246 [noLS
that sophisticated sym- LSN - max. dev. | opt | opt | opt | opt | opt |0.36nOLS
metry breaking does LSN-av.dev. | opt | opt |opt| opt | opt |0.14|no0LS
not pay off for the

problem sizesthat we  Tap|e 1. Comparison of constraint programming (CP-X) based
cantacklesofar. Note  anq |ocal search (LS-X) based approaches for the TBLS. Time

that we cannot initial-  given jn CPU seconds. All values are medians over 10 runs.
ize the first row when

using thetraversal strategy without spending alot of time in the symmetry checks since
then all symbol permutations must be checked from the beginning. Instead, we can
initialize the first columnin the row dual, thus fixing the traversal of symbol 0.

Next, we seethat thelocal search approach can also find optimal solutionsfor orders
upto 9if wedo not use strategic oscillation (L SN). However, strategic oscillation (L SO)
helps us to obtain feasible Latin square solutions (see order 12 for example), which is
why we favor this approach for higher orders for which we are unableto providetotally
balanced L atin squares so far. Table 1 also givesthe maximum and the average deviation
from the perfect balance in these cases.

As mentioned in the previous section, we also developed a CP based model for
the generation of spatially-balanced Latin squares by means of composition of columns
of spatially-balanced Latin sguares. In this approach we use spatially-balanced Latin
squares of order n as building blocks to produce spatially-balanced Latin squares of
order 2n or order 3n. Using such a strategy we were able to generate, for example,
a spatially-balanced Latin square of order 18, by composing spatially-balanced Latin
squares of order 9. We are currently working on streamlining this approach in order
to produce efficient constructions for the generation of totally spatially-balanced Latin
square instances of order n, n mod 2 = 0 or n mod 3 = 0. While we do not see
how the local search approach could be further improved so that it can provide optimal




solutions for much larger orders, the idea of composing squares can be stated naturally
as aconstraint program.

4 Conclusionsand Future Work

We present several modelsfor the generation of totally spatially-balanced L atin squares.
While it is unclear at this stage how the local search approach could be tuned to give
optimal solutions for orders greater than 9, our results with CP based models were
very encouraging; We could find totally spatially-balanced Latin instances up to or-
der 18. Moreover, our different CP based models provided us with good insights about
the structure of the problem. In fact, we conjecture that totally spatially-balanced Latin
sguares can be generated using a polynomial time construction, based on a represen-
tation that exploits the underlying traversal structure of Latin squares corresponding to
matchings in bipartite graphs, as well as the duality between rows, columns, and sym-
bolsin a balanced Latin square. We also conjecture that, for certain orders, spatially-
balanced L atin squares can be generated by means of composition, in polynomial time.
If some symbols are pre-assigned to specific cells of the Latin square, our conjectureis
that the problem of deciding if a partially filled Latin square can be completed into a
balanced Latin squareis an NP-complete problem. We hope that our results will further
stimulate research on this interesting and challenging problem.
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