
Elicitation of Use Cases for Product Lines

A. Fantechi*, S. Gnesi^, I. John+, G. Lami^, J.Dörr+

* Dip. di Sistemi e Informatica - Università di Firenze - Italy
^ CNR - Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo" - Pisa, Italy

+Fraunhofer Institute for Experimental Software Engineering (IESE) - Kaiserslautern -
Germany

Abstract. Use Cases can be employed in system requirements engineering
to capture requirements from an external point of view. In product line mod-
eling, commonalities and variabilities of a family of systems have to be de-
scribed. In order to support variability modeling for product lines with Use
Cases, extensions and modifications of Use Cases have to be provided. Cap-
turing the variations characterizing the different products is a key issue for
product line requirements engineering. This paper describes an approach to
derive product line requirements in the form of Use Cases, starting from the
analysis of user documentations of existing systems. We provide a disci-
plined approach to integrate legacy information found in existing documen-
tation into product line Use Cases and illustrate this with an example.

1 Introduction

The development of industrial software systems may often benefits from the adoption
of a development cycle based on the so-called system-families or product lines ap-
proach [18] [7]. This approach aims at lowering production costs by sharing an over-
all reference architecture and concepts of the products, but allows them to differ with
respect to particular product characteristics in order to e.g. serve different markets. The
production process in product lines is therefore organized with the purpose of maxi-
mizing the commonalities of the product family and minimizing the cost of variations
[13].
In the first stage of a software project, usually called requirements elicitation [12], the
information and knowledge of the system under construction is acquired. When elicit-
ing and modeling requirements on a product line two different problems have to be
addressed. On one side there is the problem of capturing requirements common to all
members of the product line and requirements valid only for parts of the line mem-
bers. On the other side there is the problem of specializing and instantiating the ge-
neric product line requirements into application requirements for a single product.
To deal with these problems, the relations between line and product requirements have
to be represented in the modeling approach, and the concepts of parameterization,
specialization and generalization need to be supported by the modeling concepts.

When building a new product line, the approach to do so can either be independent (a
company starts a product line without any predecessor products), project-integrating
(existing systems under development will be integrated into the product line), reengi-
neering driven (legacy systems have to be reengineered into the product line) or lever-
aged (the company sets up a product line based on a product line that is already in
place) [23]. User documentation that is useful as input for product line modeling can
be found in the cases of project-integrating, reengineering-driven and leveraged product
line engineering. Therefore, user documentation is the first choice to start the elicita-
tion process for the information needed in product line modeling.
As developing a product line is a complex task, in depth knowledge of the problem
domain often is a prerequisite for a successful product line. So, when a company
starts to do product line engineering often systems already exist that can be used as a
knowledge base for the new product line. Figure 1 describes this situation.

Figure 1 Capturing Product Line Use Cases

Domain experts with knowledge in the problem or application domain, together with
product line engineers with knowledge in the solution domain (the processes and
products in product line engineering) have to elicit and model commonalities and
variabilities in a highly interactive and time consuming process.
In this paper we describe an approach for elicitation and modeling Use Cases of prod-
uct lines from existing user documentation. Use Cases are a powerful tool to capture
functional requirements for software systems. They allow structuring requirements
documents with use goals and provide a means to specify the interaction between a
certain software system and its environment [8]. A Use Case defines a goal-oriented
set of interactions between external actors and the system under consideration.

Documentation
of existing systems

Modeling

Product Line
Use Cases

Domain
Experts

Product Line
Engineers

Elicitation
commonalities variabilities

Commonalities, variabilities
And instantiation support

Solution
Domain

Knowledge

Problem
Domain

Knowledge

With the proposed approach commonalities and variabilities can be expressed and
managed within Use Cases. Use Cases are able to describe both the common charac-
teristics of all the products belonging to a product line and the variations that differen-
tiate products among them. Use Cases describing only one line member are then
obtained by an instantiation process. The primary information source used for elicita-
tion is the user documentation of systems coming from the same application domain
as the product line under development.
The paper is structured as follows: in Section 2 we describe textual Use Case, in
Section 3 we describe how the notation for Use Cases can be extended in order to
represent all types of variability needed to model a product line (and to support instan-
tiation). In Section 4 we describe the elicitation of information needed for the Use
Cases. We illustrate elicitation and modeling on a practical example in Section 5 and
conclude the paper in section 6.

2 Use Cases

A Use Case [8] describes the interaction (triggered by an external actor in order to
achieve a goal) between a system and its environment. A Use Case defines a goal-
oriented set of interactions between external actors and the system under consideration.
The term actor is used to describe the person or system that has a goal against the
system under discussion. A primary actor triggers the system behavior in order to
achieve a certain goal. A secondary actor interacts with the system but does not trigger
the Use Case.
A Use Case is completed successfully when its goal is satisfied. Use Case descrip-
tions also include possible extensions to this sequence, e.g., alternative sequences that
may also satisfy the goal, as well as sequences that may lead to failure in completing
the service in case of exceptional behavior, error handling, etc. The system is treated
as a "black box”; thus, Use Cases capture who (actor) does what (interaction) with the
system, for what purpose (goal), without dealing with system internals. A complete
set of Use Cases specifies all the different ways to use the system, and therefore de-
fines the whole required behavior of the system. Generally, Use Case steps are written
in an easy-to-understand, structured narrative using the vocabulary of the domain. A
scenario is an instance of a Use Case, and represents a single path through the Use
Case. Thus, there exists a scenario for the main flow through the Use Case, and as
many other scenarios as the possible variations of flow through the Use Case (e.g.,
triggered by options, error conditions, security breaches, etc.). Scenarios may also be
depicted in a graphical form using UML Sequence Diagrams.

Figure 2 shows the template of the Cockburn’s Use Case taken from [8]. In this
textual notation, the main flow is expressed, in the “Description” section, by an in-
dexed sequence of natural language sentences, describing a sequence of actions of the
system. Variations are expressed (in the "Extensions" section) as alternatives to the
main flow, linked by their index to the point of the main flow from which they
branch as a variation. This natural language form of Use Cases has been widely used
in industrial practice to specify use cases , e.g at Nokia [11].

3 Product Lines Use Cases (PLUCs)

Following the Product Line Engineering Process Reference Model defined in the
CAFÉ project [18], and shown in Figure 3, product line development is characterized
by two processes: domain engineering and application engineering. Domain engineer-
ing is the process aiming at developing the general concept of a product line together
with all the assets which are common to the whole product line, whereas application
engineering is the process aiming at designing a specific product.
During application engineering a customer specific application will be defined. How-
ever, differently from the usual single product development, the definition process of
the customer specific application is not only influenced by the requirements of the
customer but also by the capabilities of the product line.
This diagram shows that it is possible to move from the product line level (by means
of the system line engineering activity) to the product level and vice versa (by means
of the system line reverse engineering activity).

USE CASE # < the name is the goal as a short active verb phrase>
Goal in Context <a longer statement of the goal in context if needed>
Scope & Level <what system is being considered black box under design>

<one of: Summary, Primary Task, Sub-function>
Preconditions <what we expect is already the state of the world>
Success End Condition <the state of the world upon successful completion>
Failed End Condition <the state of the world if goal abandoned>
Primary,
Secondary Actors

<a role name or description for the primary actor>.
<other systems relied upon to accomplish Use Case>

Trigger <the action upon the system that starts the Use Case>
Description Step Action

1 <put here the steps of the scenario from trigger to goal
delivery, and any cleanup after>

2 <...>
3

Extensions Step Branching Action
1a <condition causing branching> :

<action or name of sub-Use Case>
Sub-Variations Branching Action

1 <list of variations>

Figure 2 Use Cases template

Going upwards, applications are developed considering the capabilities of the product
line specializing, extending and adding line requirements. Consequently, software
product lines need more sophisticated requirement processing and requirements should
deal with variability.
In particular, product line requirements can be considered in general as composed of a
constant and a variable part. The constant part includes all those requirements dealing
with features or functionalities common to all the products belonging to the line and
that, for this reason, do not need to be modified. The variable part represents those
functionalities that can be changed to differentiate a product from another.
Variability can be seen from two different perspectives: the first is the product per-
spective where each variability has to be considered as an aspect to be instantiated.
From the product line perspective a variability can be seen as a goal to be reached by
abstracting all the instances related to the existing products belonging to a product
line.
It is possible to move from the product line level to the product level by an instantia-
tion process and on the contrary from the product level to the product line level by an
abstraction process. In these two different processes the main objects to pay attention
on are variations. A possible extension of Use Cases to express variability during
requirements engineering of product lines is an extension based on structuring the Use
Cases as having two levels: the product line level and the product level [5]. In this
way product-related Use Cases should be derived from the product line-related Use
Cases by an instantiation process.
This approach considers the variations implicitly enclosed into the components of the
Use Cases. The variations are then represented by tags that indicate those parts of the
product line requirements needing to be instantiated for a specific product in a product-
related document. For doing that, tags are included into the Use Case scenarios (both
main scenario and extensions) in order to identify and specify variations. The tags
represent three kinds of variability: Alternative, Parametric, and Optional.

Figure 3 The CAFÉ-Product Line reference framework

System
Requirements

Business Strategy

Application
Engineering

Systems

Domain Requirements

SYSTEM FAMILY
REVERSE
ENGINEERING

SYSTEM
FAMILY

ENGINEERING

Domain
Engineering

Assets

PRODUCT LEVEL

PRODUCT LINE LEVEL

1. Alternative components: they express the possibility to instantiate the requirement
by selecting an instance among a predefined set of possible choices, each of them
depending on the occurrence of a condition;

2. Parametric components: their instantiation is connected to the actual value of a
parameter in the requirements for the specific product;

3. Optional components: their instantiation can be done by selecting indifferently
among a set of values, which are optional features for a derived product.

The instantiation of these types of variabilities will lead to a set of different product-
related Use Cases. As an example, a Use Case in the PLUC notation is presented in
Figure 4.

Figure 4 Example of a Use Case in the PLUC notation

This Use Case describes the activities related to the submission of a project document.
Let’s suppose that it can be possible to submit different two types of documents:
either slides (in the .ppt format) or papers (in .doc, pdf. or .ps format). Curly brackets
are introduced into the Use Case elements, variables (here V1 and V2) describe the
variation points within the use case. The possible instantiations and the type of the
variations is given within the use case and the possible values are described with
logical expressions
4 Elicitation of Information for Product Line Use Cases

Product Line Engineering includes the construction of a reusable set of assets. Con-
structing such a reusable asset base for specific products in a domain is a more sophis-
ticated task than the development of assets for a single system because several prod-
ucts with their commonalities and variabilities have to be considered. This implies the

Use Case Name: Submission of a document

Primary Actor : the author

Goal: Preparation and submission of a project document

Secondary Actor : Project’s web server

Main Success Scenario:

1. The author writes a document {[V1] of a certain class}
according to the {[V2] appropriate} format within the
submission deadline

2. Author puts the document on the project document
repository

Extensions:

1a. The author misses the submission given deadline:

A remind is sent to the author from the web server manager

Variabilities:

V1: 1. Slides V1 alternative

2. Paper

V2: if V1=1 then file .ppt V2 parametric/ optional

else if V1=2 then file.doc or file.pdf or file.ps1.

Use Case Name: Submission of a document

Primary Actor : the author

Goal: Preparation and submission of a project document

Secondary Actor : Project’s web server

Main Success Scenario:

1. The author writes a document {[V1] of a certain class}
according to the {[V2] appropriate} format within the
submission deadline

2. Author puts the document on the project document
repository

Extensions:

1a. The author misses the submission given deadline:

A remind is sent to the author from the web server manager

Variabilities:

V1: 1. Slides V1 alternative

2. Paper

V2: if V1=1 then file .ppt V2 parametric/ optional

else if V1=2 then file.doc or file.pdf or file.ps1.

planning, elicitation, analysis, modeling and realization of the commonalities and
variabilities between the planned products.
Usually, the development of a product line is not a green field task. Legacy systems
exist that shall be integrated into a product line. The information from those systems
is a valuable source for building the reusable assets. This information from existing
systems can be found in the code, in architecture descriptions and in requirements
specifications [14]. All this information can be found in documents produced during
the lifecycle of the existing systems.

4.1 Benefits of Using Legacy Information

Until now, the information needed to build a product line model is elicited interac-
tively with high expert involvement. As domain experts have a high workload and are
often unavailable, high expert involvement is a risk for the successful introduction of
a product line engineering approach in an organization.

There is a lack of guidance on how to integrate textual information found in legacy
documents into product line models.

Single system elicitation methods cannot be taken as they are, because multiple
documentations have to be compared, commonalities and variabilities have to be
elicited and additional concepts (e.g. abstractions, decisions) are needed. Systematically
integrating legacy documentation into product lines models supports:
• Integration and reuse of textual information.
• Feasibility of product line modeling by decreasing the effort the domain experts

have to spend with interviews and meetings.
• Increased acceptance of the product line in the development organization because

there is confidence in the legacy products and reusing the legacy information in-
stead of developing everything from scratch reduces the effort to build the product
line. Better traceability from the product line to the existing system.

There are different kinds of legacy documentation (requirements specs, user manu-
als, design documents...). As Use Cases are more and more used in domain modeling
(e.g. [6], [13], [15]), it is important to have a closer look on how to elicit informa-
tion for product line Use Cases. Use Cases describe the system from a users point of
view. Therefore, user manuals are the most important source of information as input
for Use Cases. In this paper, we adopt an approach for controlled elicitation, which
guides product line engineers and domain stakeholders in how to elicit knowledge
from existing documents and how to transform documentation into product line mod-
els. This approach is called the PuLSE1 - CaVE-approach (Commonality and Vari-
ability Elicitation) that is integrated into the PuLSE-Framework for product line
engineering [4] that is a customizable and flexible framework for all phases of product
line engineering. CaVE is an approach for structured and controlled integration of user
documentation of existing systems into the product line [16].

1 PuLSE is a registered trademark of Fraunhofer IESE

With the elicitation approach common and variable features [17], Use Case elements,
tasks [21] and requirements can be elicited. We focus on the elicitation of Use Case
elements here. As existing systems are the basis for this approach, it can be seen as a
reengineering method for documents transferring user documentation into basic ele-
ments of information for product line Use Cases. The approach was validated in two
case studies [16], further case studies, as a deeper empirical validation will follow. The
approach consists of the following phases (see Figure 5):
• Preparation
• Search
• Selection, change and modification

The first two steps of the approach can be performed by persons who just have a
slight domain understanding, they do not have to be domain experts. The third step
requires involvement of domain experts as there the valid documentation entities have
to be selected. We will now describe the three steps in more detail.

4.2 Preparation

Preparation consists of the four sub steps collection, selection, division and brows-
ing. During collection, user documentation for the systems that should be integrated
into the product line and of systems that are related should be collected to have all
needed information available. In the case of a project-integrating product line adoption
(c.f. section 1) these are all user-documentations of the systems currently under devel-
opment (as far as they already exist), in the case of a reengineering-driven or leveraged
product line adoption all user documentations of existing systems in the domain have
to be considered. As parallel reading of more than one document requires divided and
increased attention and leads to lower performance [28], the number of documents to

Documentation of
existing systems

Preparation

Selected
Documentation

Entities

s earch ,
c lustering

c lassification ,

common + var iable
use case elements

Selection +
c hange

Domain
Glossary

Parts of
family

use cases

Expert
involvement

Process
Step

Process
Products

Figure 5 An outline of the elicitation approach

be read in parallel should be reduced to a minimum. So, if there are more than 3 sys-
tems, select two or three documents that cover the variety of systems (e.g., one
documentation of a low-end system, one of a high end system and one typical system)
to compare for a first search in the documents. The other documents can be used to
complete the elicited information after completing the search phase.

After selecting the three typical documentations, divide them into manageable and
comparable parts of 3 to 10 pages (e.g., comparable subchapters). In browsing, for
each of those manageable parts (or for a subset of those parts that includes typical sub
domains) browse through them in order to decide the amount of variability in them.
There are two alternatives:
For those document parts that differ in less than 30% of the text compare the docu-
ments in parallel in the following phases.
For those document parts that differ in more than 30% of the text, process them one
after another in the following phases. Start the analysis with the biggest document.

4.3 Search

In the search step the identified document parts are analyzed and Use Case elements
are searched. The elements to be identified in the documents, which should be sized
from one word to at most 5-6 lines, are marked and tagged in the source documents.
Common and variable Use Case elements that can be identified are (see. Figure)
names, actors, goals, preconditions, steps of descriptions, success conditions, exten-
sions.

Common and variable use case elements can be identified and marked in the text
with the following heuristics (specific rules-of-thumb or arguments derived from
experience[27]):
• Headings of sections or subsections typically contain names of Use Cases.
• Phrases like “only by”, “by using”, “in the case of” can be markers for Use Case

preconditions.
• Use Case preconditions and goals can typically be found in the beginning of a

chapter.
• Use Case preconditions can be found before or within the description of a Use

Case.
• Phrases like “normally” “with the exception”, “except” can mark Use Case exten-

sions.
• Numbered lists or bulleted lists are markers for an ordered processing of sequen-

tial steps and describe Use Case descriptions.
• Sentences that describe interactions with the system in the form of “to do

this…do that…” are Use Case descriptions.
• Passive voice is typically a marker for system activity (e.g. “The volume of the

radio is muted” = the system mutes the volume of the radio). These sentences
can be used in the Use Case description.

Commonalities and variabilities in those elements can be found with the following
heuristics:
• Arbitrary elements occurring only in one user manual probably are optional ele-

ments.

• Headings or subheadings that only occur in one of the documentations can be
Use Cases that are optional as a whole.

• Headings or subheadings that have slightly different names or headings or sub-
headings that have different names but are at the same place in the table of con-
tents can be hints for alternative Use Cases.

• Phrases that differ in only one or a few words can be evidence for alternatives.
• If numerical values in the document differ they can be parametrical variabilities.
• Menu items that are described only in some of the documents can be hints for

optional or alternative functionality (Use Cases or parts of them).
With the support of these heuristics, which help in finding a relevant part of the Use
Case elements and variabilities, the user documents should be marked (e.g. with
different colors for different Use Case elements and for variabilities) and integrated
into an intermediate document. The list of heuristics is expected to grow as further
case studies are performed. Further Use Case elements that are identified without the
help of the heuristics are added. The identified elements should be extracted from the
document and tagged with attributes containing the information needed for selecting
appropriate elements for modeling the product lines requirements in terms of PLUCs.
Table 1 shows the elements of such a notation.

4.4 Selection

In the last step, selection, the extracted and tagged elements have to be checked and
possibly adjusted by a domain expert. The domain expert will change the elements
regarding the following aspects:
• Is a text element that was marked as a possible Use Case element, a Use

Case element in the new product line?

Table 1 Attributes for the elicited text items

Attribute Values Description
ID e.g. 1…n or

doc.number
A unique identifier for the element

Value text The text of the element that was
found in the document

Document Identifiers The identifiers of the documents
this element was found in

Use Case
Type

U s e C a s e
elements

The elements of Use Cases
(description, precondition..) the
text matches to

Var Type Comm., opt, alt,
param.

The hypothesis for the variability
type of the element (default is
commonality)

Parent ID The element, this element is part
of

Use Case
relations

Use Case Name A possible Use Case this element
is related to

Var
relations

List of IDs The IDs of other elements that
contain alternatives or different
parameters for this element

• Is an element marked as optional/alternative really an optional/alternative
element in the new product line?

• Are the Use Cases to be built out of the elements the right Use Cases to
describe the systems of the product line?

 The relations (see last lines of Table 1) are used to make comparisons between the
documents easier, to establish traceability to the source documents and, with tool
based selection, to support navigation in the elements and between the sets of docu-
ments. With these elements the domain expert and the requirements engineer can
built use cases using the information about the elements collected in the tags. With
the help of the tags and by putting together the elements from the document and
adding parts of the use cases that are not mentioned in the document use cases in the
notation described in Section 3 can be easily built.

5 Application on a Case Study

In this section the approach described in Section 4 to derive Use Cases using the
PLUC notation is applied on an industrial case study to show its applicability:
existing user manuals of two mobile phones from the same product line that, from
here in after, we indicate as P1 and P2, have been considered.
When the elicitation process is applied to a single product, the effort can be concen-
trated on the identification of the correspondences between the parts of the manual and
the Use Case elements. Starting from a fragment of a user manual of a mobile phone,
represented in Figure 6, a possible correspondence with standard Use Case elements
can be shown.
When product families requirements have to be derived, starting from several docu-
ments, each related to a particular product of the product line, the process shown be-
fore is not in general sufficient. In this case all the commonalities and variabilities
should be derived as the outcome of the elicitation phase. With reference to the ap-
proach described in Section 4, after the collection, selection and division phases the
function descriptions of the user manuals have been identified as being the basic
documentation entities for the elicitation process. In this case study the description of
the GAMES functionality of the two phones P1 and P2 has been taken as example.
The browsing phase determines the amount of commonalities and variabilities be-
tween the two entities under analysis. It is then evident that the two products differ at
least for the set of games provided to the user and for the presence of the WAP con-
nection. Figure 7 shows how the parts of the user manuals of the mobile phones P1
and P2 related to the GAMES functionality can be put in relation after the preparation
phase.

In the search phase the identified parts are analysed and the Use Case elements are
searched. The found commonalities and variabilities are extracted and tagged and then
integrated into an intermediate document represented in Table 2 in a tabular format.
Where each row of this table represents an elicited text item according to the scheme
of Table 1.

 12. Games (Menu 8)
The phone offers you the following games to play: Snake II, Space
impact, Bantumi , Pairs II
To access this menu: In standby mode, press Menu , scroll to Games , and
press Select

Playing a game
Select the desired game and then one of the following options:
• New game : Starts a new game session
• Top score : Shows the highest score so far
• Instructions : Shows a help text on how to play the game. You can scroll
through the text with < or >
• Level : allows you to set the difficulty level for the selected game
• Continue : Resumes a game after it was paused by pressing Menu or C.
Start the game by pressing and key except for Menu, C or |.
• Settings allow you to set the sounds, lights, and vibrator (Shakes)

Use
Case
Name

Primary actor

Use
Case
Goal

Precondition

Scenario
Description

12. Games (Menu 8)
The phone offers you the following games to play: Snake II, Space
impact, Bantumi , Pairs II
To access this menu: In standby mode, press Menu , scroll to Games , and
press Select

Playing a game
Select the desired game and then one of the following options:
• New game : Starts a new game session
• Top score : Shows the highest score so far
• Instructions : Shows a help text on how to play the game. You can scroll
through the text with < or >
• Level : allows you to set the difficulty level for the selected game
• Continue : Resumes a game after it was paused by pressing Menu or C.
Start the game by pressing and key except for Menu, C or |.
• Settings allow you to set the sounds, lights, and vibrator (Shakes)

Use
Case
Name

Primary actor

Use
Case
Goal

Precondition

Scenario
Description

Figure 6 Correspondences between user manual parts and Use Case elements

Figure 7 Correspondences between P1 and P2

The outcome of this phase is an intermediate document, which is obtained from both
the previous ones by tagging the common parts and the detected variabilities. The
final outcome of the selection phase could be a first version of a Use Case expressed
in the PLUC formalism.
Realistically, we do not have to expect that the variable parts to be tagged could be
identified simply by a “difference” operation between the two docs. For example, the
text elements put in correspondence by the C double arrow in Figure 7 have the same
meaning, but, in the case of the P1 model they seem suitable for being put in the
Precondition element of the resulting Use Case, while for the P2 model they seem
more suitable for being considered as belonging to the Scenario.
The resulting Use Case will depend on the decision on how to mark these text ele-
ments. Such a decision cannot be made in general but should be left to a domain
expert in the selection phase of the approach. This can be made either as a case-by-
case decision for each element or as a general parameter to select before applying the
process. In Figure 8 a possible outcome in the PLUC format of the product line re-
quirements related to the GAME functionality is shown.

6 Conclusions

In this paper we described an approach for elicitation and specification of Use Cases
for product lines based on existing user documentation. Use Cases, which are quite

Table 2 Text items elicited in the case study

ID Value Do
c.

Use Case
Type

Par-
ent

Var
Type

Use Case
relations

Var
Relati
ons

P1.1 The phone P1 Actor - Comm. UC
Games

P2.1

P1.2 Games to play:
SnakeII, Space impact,
Bantumi, PairsII,

P1 Scenario
Description

- Comm UC
Games

P2.2

P1.4 Bumper P1 Scenario
Description

P1.2 Opt UC
Games

P1.5 To access this menu:
press menu, scroll to
games, select

P1 Precondi-
tion

- Comm UC
Games

P2.3

P1.6 In the game menu,
scroll to settings and
press select

P2 Scenario
Description

- Opt UC
Games

-

P2.1 The phone P2 Actor Comm. UC
Games

P1.1

P2.2 Games to play:
SnakeII, Space impact,
Bantumi, PairsII,

P2 Scenario
Description

- Comm UC
Games

P1.2

P2.3 To access this
menu: press menu,
scroll to games, select

Precondi-
tion

- Comm UC
Games

1.3

common in single system requirements engineering are also often used in product line
engineering to model requirements on a line of systems. The approach we describe
here supports capturing of the information found in user documentation of legacy
systems and the specification of this information in Use Cases that are extended with
a mechanism to express variabilities. Up to now, there only small case studies exist
with the approach, additional case studies and applications are described in [5] and
[16]. It still has to be shown that the approach scales to large product families, but as
the elicitation, analysis and modeling of the use cases can be performed subdomain by
subdomain in larger systems we hope that the approach will scale.

There are several approaches for domain analysis and product line modeling. An
overview on domain analysis methods like FODA [17], ODM [24] or Commonality
Analysis within FAST [26] can be found in several surveys like [9] or [2]. But in
most of these approaches, the integration of legacy systems into the domain analysis
phase is not described in depth. In ODM [24], the primary goal is the systematic
transformations of artifacts (e.g., requirements, design, code, tests, and processes)
from multiple existing systems into assets that can be used in multiple systems.
ODM stresses the use of legacy artifacts and knowledge as a source of domain knowl-
edge and potential resources for reengineering/reuse. MRAM [20] is a method that
describes how to analyze and select appropriate textual requirements for a product line
but their focus is on the transition from domain engineering rather than on the transi-
tion between existing systems and domain engineering. There are some methods from
single system requirements elicitation that describe how to elicit information from
existing documents. Alexander and Kiedaisch [1], Biddle [4] and the REVERE Project

Figure 8 The resulting PLUC

Primary Actor: the user, the {[V0]} mobile phone (the system)
Goal: play a game on a {[V0]} mobile phone and record score
Preconditions: the function GAMES has been selected from the main MENU
Main Success Scenario:
- The system displays the list of the available games: SnakeII, Space impact, Bantumi, PairsII and {[V1] additional}
- The user select a game
- The system displays the logo of the selected game
- The user selects the difficulty level by following the {[V2] appropriate} procedure and press YES
- The system starts the game and plays it until it goes over
- The user records the score achieved and {[V3] possibly} send the score to Game Club via WAP
- The system displays the list of the {[V1] available} games
- The user presses NO

V0: alternative 1. P1 model
2. P2 model

V1: optional if V0=2 then Bumper

V2: parametric if V0=1 then procedure-A: - press Select
- scroll to Settings and press YES
- scroll to Difficulty Level and press YES
- select the desired difficulty level, press YES

else if V0=2 then procedure-B: - press Select
- scroll to Level and press YES
- select the desired difficulty level, press YES

V3: parametric if V0=1 then function not available
else if V0=2 then function available

Primary Actor: the user, the {[V0]} mobile phone (the system)
Goal: play a game on a {[V0]} mobile phone and record score
Preconditions: the function GAMES has been selected from the main MENU
Main Success Scenario:
- The system displays the list of the available games: SnakeII, Space impact, Bantumi, PairsII and {[V1] additional}
- The user select a game
- The system displays the logo of the selected game
- The user selects the difficulty level by following the {[V2] appropriate} procedure and press YES
- The system starts the game and plays it until it goes over
- The user records the score achieved and {[V3] possibly} send the score to Game Club via WAP
- The system displays the list of the {[V1] available} games
- The user presses NO

V0: alternative 1. P1 model
2. P2 model

V1: optional if V0=2 then Bumper

V2: parametric if V0=1 then procedure-A: - press Select
- scroll to Settings and press YES
- scroll to Difficulty Level and press YES
- select the desired difficulty level, press YES

else if V0=2 then procedure-B: - press Select
- scroll to Level and press YES
- select the desired difficulty level, press YES

V3: parametric if V0=1 then function not available
else if V0=2 then function available

[22] focus on reusing natural language requirements in different forms. The QuARS
approach [10], the KARAT approach [25] and Maarek [19] apply natural language
processing or information retrieval techniques to requirements specifications in order
to improve their quality. The approach that we describe here overcomes the shortcom-
ings of other approaches by explicitly considering variability and integrating user
documentation into product line modeling and modeling of use cases.

With the help of an automatic tool, the selection of the text elements and the tag-
ging with the attributes could be performed semi-automatically. The process of ana-
lyzing a user manual using information retrieval methods [3] in a semi-automated
process opens up the possibility to capitalize on the wealth of domain knowledge in
existing systems considered for migration to next-generation systems. Converting
these existing requirements into domain models can reduce cost and risk while reduc-
ing time-to-market. Tool support can increase efficiency of processing and correctness
of the results significantly for the techniques proposed and can relieve experts and
product line engineers. It is planned to develop an elicitation tool which integrates
document-analysis and information retrieval techniques like indexing or morphology
to support document-based modeling of the commonalities and variabilities of
planned products in the domain of a product. This tool can then support stakeholders
in the domain in identifying, eliciting and analyzing commonalities and variabilities
in the domain, which are retrieved from the existing documents. Such a tool could
integrate existing tools that, by means of natural language processing techniques, are
able to analyze documents and to point out particular sentences or special wordings,
to give support for the search phase.

Acknowledgements: This work was partially supported by the Eureka S!2023
Programme., ITEA (ip00004, Project CAFÉ). We wish to thank Alessandro Maccari
from NOKIA for interesting discussions on the topics of this paper.

References

1. I. Alexander and F. Kiedaisch. Towards recyclable system requirements. In ECBS’02,
9th IEEE Conference and Workshops on Engineering of Computer-Based Systems,
April 2002, Lund, Sweden, 2002.

2. G. Arango. Domain analysis methods. In W. Shaefer, R. Prieto-Diaz, and M. Matsumoto,
editors, Software Reusability. Ellis Horwood, 1993.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval. Addison-Wesley,
1999.

4. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M.
DeBaud. PuLSE: A Methodology to Develop Software Product Lines. In Proceedings of
the Symposium on Software Reusability (SSR’99), Los Angeles, CA, USA, May 1999.
ACM.

5. A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, A. Maccari, Use Case Description of Re-
quirements for Product Lines, REPL’02, Essen, Germany, September 2002.

6. Robert Biddle, James Noble, and Ewan Tempero. Supporting Reusable Use Cases. In
Proceedings of the Seventh International Conference on Software Reuse, April 2002.

7. P. C. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering. Addison-Wesley, August 2001

8. A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2001.

9. J.-M. DeBaud and K. Schmid. A Practical Comparison of Major Domain Analysis Ap-
proaches - Towards a Customizable Domain Analysis Framework. In Proceedings of
SEKE’98,San Francisco, USA June 1998.

10. F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The linguistic approach to the natural
language requirements quality; benefit o the use of an automatic tool. In Proceedings
of the 26th Annual IEEE Computer Society Nasa Goddard Space Flight Center Software
Engineering Workshop, 2001.

11. A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, Application of Linguistic Techniques
for Use Case Analysis, RE’02, Essen, Germany, September 2002

12. J. A. Goguen, Charlotte Linde, Techniques for Requirements Elicitation, Proceedings
of the 1st International Symposium on Requirements Engineering, p.152-163, 1993

13. G. Halmans, K. Pohl Communicating the Variability of a Software-Product Family to
Customers Journal of Software and Systems Modeling, Springer, 2003 to appear

14. I. John. Integrating Legacy Documentation Assets into a Product Line. In: Proceedings
of the Fourth International Workshop on Product Family Engineering (PFE-4), Bilbao,
Spain, October 2001.

15. I. John, D. Muthig, Tailoring Use Cases for Product Line Modeling, REPL’02, Essen,
Germany, September 2002

16. I. John, J. Dörr. Extracting Product Line Model Elements from User Documentation.
Technical Report, Fraunhofer IESE, 2003

17. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engi-
neering Institute, Carnegie Mellon University, November 1990.

18. F. van der Linden. Software Product Families in Europe: The Esaps and Café Projects.
IEEE Software, 19(4):41--49, JulyAugust 2002.

19. Y. S. Maarek, D. M. Berry, and G. E. Kaiser. GURU: Information retrieval for reuse. In
P.Hall, editor, Landmark Contributions in Software Reuse and Reverse Engineering.
Unicom Seminars Ltd, 1994.

20. M. Mannion, B. Keepence, H. Kaindl, and J. Wheadon. Reusing Single System Re-
quirements for Application Family Requirements. In Proceedings of the 21st Interna-
tional Conference on Software Engineering (ICSE’99), May 1999.

21. B. Paech and K. Kohler. Task–driven Requirements in Object-oriented Development. In
Leite, J., Doorn, J., (eds) Perspectives on Requirements Engineering, Kluver Academic
Publishers, 2003, to appear

22. P. Rayson, L. Emmet, R. Garside, and P. Sawyer. The REVERE project: experiments with
the application of probabilistic nlp to systems engineering. In Pro-ceedings of 5th In-
ternational Conference on Applications of Natural Language to Information Systems
(NLDB’2000). Versailles, France, June, LNCS 1959, 2000.

23. K. Schmid and M. Verlage. The Economic Impact of Product Line Adoption and Evolu-
tion. IEEE Software, 19(4):50--57, JulyAugust 2002.

24. Software Technology for Adaptable, Reliable Systems (STARS). Organization Domain
Modeling (ODM) Guidebook, Version 2.0, June 1996.

25. B. Tschaitschian, C. Wenzel, and I. John. Tuning the quality of informal software re-
quirements with KARAT. In Proceedings of the Third International Workshop on Re-
quirements Engineering: Foundations of Software Quality (REFSQ’97), 1997.

26. D. M. Weiss and C.T.R. Lai. Software Product Line Engineering: A Family Based Soft-
ware Development Process. Addison-Wesley, 1999.

27. http://www.whatis.com
28. C.D. Wickens. Processing resources in attention. In R. Parasuraman & R. Davies (eds.),

Varieties of attention (pp.63-101). New York, 1984, Academic Press.

