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Abstract. We present an analytic solution to the problem of estimating multiple
2-D and 3-D motion models from two-view correspondences or optical flow. The
key to our approach is to view the estimation of multiple motion models as the
estimation of a single multibody motion model. This is possible thanks to two im-
portant algebraic facts. First, we show that all the image measurements, regardless
of their associated motion model, can be fit with a real or complex polynomial.
Second, we show that the parameters of the motion model associated with an im-
age measurement can be obtained from the derivatives of the polynomial at the
measurement. This leads to a novel motion segmentation algorithm that applies
to most of the two-view motion models adopted in computer vision. Our experi-
ments show that the proposed algorithm outperforms existing algebraic methods in
terms of efficiency and robustness, and provides a good initialization for iterative
techniques, such as EM, which is strongly dependent on correct initialization.

1 Introduction

A classic problem in visual motion analysis is to estimate a motion model for a set of
2-D feature points as they move in a video sequence. Ideally, one would like to fit a
single model that describes the motion of all the features. In practice, however, different
regions of the image obey different motion models due to depth discontinuities, perspec-
tive effects, multiple moving objects, etc. Therefore, one is faced with the problem of
fitting multiple motion models to the image, without knowing which pixels are moving
according to the same model. More specifically:

Problem 1 (Multiple-motion estimation and segmentation). Given a set of image mea-
surements {(xj

1, x
j
2)}N

j=1 taken from two views of a motion sequence related by a col-
lection of n (n known) 2-D or 3-D motion models {Mi}n

i=1, estimate the motion models
without knowing which image measurements correspond to which motion model.

Related literature. There is a rich literature addressing the 2-D motion segmentation
problem using the so-called layered representation [1] or different variations of the
Expectation Maximization (EM) algorithm [2,3,4]. These approaches alternate between
the segmentation of the image measurements (E-step) and the estimation of the motion
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parameters (M-step) and suffer from the disadvantage that the convergence to the optimal
solution strongly depends on correct initialization [5,6]. Existing initialization techniques
estimate the motion parameters from local patches and cluster these motion parameters
using K-means [7], normalized cuts [5], or a Bayesian version of RANSAC [6]. The only
existing algebraic solution to 2-D motion segmentation is based on bi-homogeneous
polynomial factorization and can be found in [9].

The 3-D motion segmentation problem has received relatively less attention. Existing
approaches include combinations of EM with normalized cuts [8] and factorization
methods for orthographic and affine cameras [10,11]. Algebraic approaches based on
polynomial and tensor factorization have been proposed in the case of multiple translating
objects [12] and in the case of two [13] and multiple [14] rigid-body motions.

Our contribution. In this paper, we address the initialization of iterative approaches
to motion estimation and segmentation by proposing a non-iterative algebraic solution
to Problem 1 that applies to most 2-D and 3-D motion models in computer vision, as
detailed in Table 1. The key to our approach is to view the estimation of multiple motion
models as the estimation of a single, though more complex, multibody motion model that
is then factored into the original models. This is achieved by (1) eliminating the feature
segmentation problem in an algebraic fashion, (2) fitting a single multibody motion
model to all the image measurements, and (3) segmenting the multibody motion model
into its individual components. More specifically, our approach proceeds as follows:

1. Eliminate Feature Segmentation: Find an algebraic equation that is satisfied by
all the image measurements, regardless of the motion model associated with each
measurement. For the motion models considered in this paper, the ith motion model
will be typically defined by an algebraic equation of the form f(x1, x2, Mi) = 0.
Therefore an algebraic equation that is satisfied by all the data is

g(x1, x2, M) = f(x1, x2, M1)f(x1, x2, M2) · · · f(x1, x2, Mn) = 0. (1)

Such an equation represents a single multibody motion model whose parameters M
encode those of the original motion models {Mi}n

i=1.
2. Multibody Motion Estimation: Estimate the parameters M of the multibody motion

model from the given image measurements. For the motion models considered in
this paper, the parameters M will correspond to the coefficients of a real or complex
polynomial pn of degree n. We will show that if n is known such parameters can be
estimated linearly after embedding the image data into a higher-dimensional space.

3. Motion Segmentation: Recover the parameters of the original motion models from
the parameters of the multibody motion model M, i.e.

M → {Mi}n
i=1. (2)

We will show that the individual motion parameters Mi can be computed from the
derivatives of pn evaluated at a collection of n image measurements.

This new approach offers two important technical advantages over previously known
algebraic solutions to the segmentation of 3-D translational [12] and rigid-body motions
(fundamental matrices) [14] based on homogeneous polynomial factorization:
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Table 1. 2-D and 3-D motion models considered in this paper

Motion models Model equations Model parameters Equivalent to clustering

2-D translational x2 = x1 + Ti {Ti ∈ R
2}n

i=1 Hyperplanes in C
2

2-D similarity x2 = λiRix1 + Ti {(Ri, Ti)∈SE(2), λi ∈R
+}n

i=1 Hyperplanes in C
3

2-D affine x2 = Ai

[
x1

1

]
{Ai ∈ R

2×3}n
i=1 Hyperplanes in C

4

3-D translational 0 = xT
2 [Ti]×x1 {Ti ∈ R

3}n
i=1 Hyperplanes in R

3

3-D rigid-body 0 = xT
2 Fix1 {Fi ∈ R

3×3 : rank(Fi) = 2}n
i=1 Bilinear forms in R

3×3

3-D homography x2 ∼ Hix1 {Hi ∈ R
3×3}n

i=1 Bilinear forms in C
2×3

1. It is based on polynomial differentiation rather than polynomial factorization, which
greatly improves the efficiency, accuracy and robustness of the algorithm.

2. It applies to either feature correspondences or optical flows and includes most of
the two-view motion models in computer vision: 2-D translational, similarity, and
affine, or 3-D translational, rigid body motions (fundamental matrices), or motions
of planar scenes (homographies), as shown in Table 1. The unification is achieved
by embedding some of the motion models into the complex domain, which resolves
cases such as 2-D affine motions and 3-D homographies that could not be solved in
the real domain.

With respect to extant probabilistic methods, our approach has the advantage that it
provides a global, non-iterative solution that does not need initialization. Therefore, our
method can be used to initialize any iterative or optimization based technique, such as
EM, or else in a layered (multiscale) or hierarchical fashion at the user’s discretion.

Noisy image data. Although the derivation of the algorithm will assume noise free data,
the algorithm is designed to work with moderate noise, as we will soon point out.

Notation. Let z be a vector in R
K or C

K and let zT be its transpose. A homogeneous
polynomial of degree n in z is a polynomial pn(z) such that pn(λz) = λnpn(z) for
all λ in R or C. The space of all homogeneous polynomials of degree n in K variables,

Rn(K), is a vector space of dimension Mn(K) =
(

n + K − 1
K − 1

)
=

(
n + K − 1

n

)
. A

particular basis for Rn(K) is obtained by considering all the monomials of degree n
in K variables, that is zI = zn1

1 zn2
2 · · · znK

K with 0 ≤ nj ≤ n for j = 1, . . . , K, and
n1 + n2 + · · · + nK = n. Therefore, each polynomial pn(z) ∈ Rn(K) can be written
as a linear combination of a vector of coefficients c ∈ R

Mn(K) or C
Mn(K) as

pn(z) = cT νn(z) =
∑

cn1,n2,··· ,nK
zn1
1 zn2

2 · · · znK

K , (3)

where νn : R
K(CK)→R

Mn(K)(CMn(K)) is the Veronese map of degree n [12] defined
as νn : [z1, . . . , zK ]T �→ [. . . ,zI , . . . ]T with I chosen in the degree-lexicographic order.
The Veronese map is also known as the polynomial embedding in the machine learning
community.
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2 2-D Motion Segmentation by Clustering Hyperplanes in C
K

2.1 Segmentation of 2-D Translational Motions: Clustering Hyperplanes in C
2

The case of feature points. Under the 2-D translational motion model the two images
are related by one out of n possible 2-D translations {Ti ∈ R

2}n
i=1. That is, for each

feature pair x1 ∈ R
2 and x2 ∈ R

2 there exists a 2-D translation Ti ∈ R
2 such that

x2 = x1 + Ti. (4)

Therefore, if we interpret the displacement of the features (x2 − x1) and the 2-D trans-
lations Ti as complex numbers (x2 − x1) ∈ C and Ti ∈ C, then we can re-write
equation (4) as

bT
i z

.=
[
Ti 1

] [
1

−(x2 − x1)

]
= 0 ∈ C

2. (5)

The above equation corresponds to a hyperplane in C
2 whose normal vector bi encodes

the 2-D translational motion Ti. Therefore, the segmentation of n 2-D translational
motions {Ti ∈ R

2}n
i=1 from a set of correspondences {xj

1 ∈ R
2}N

j=1 and {xj
2 ∈

R
2}N

j=1 is equivalent to clustering data points {zj ∈ C
2}N

j=1 lying on n complex
hyperplanes with normal vectors {bi ∈ C

2}n
i=1. As we will see in short, other 2-D

and 3-D motion segmentation problems are also equivalent to clustering data lying
on complex hyperplanes in C

3 and C
4. Therefore, rather than solving the hyperplane

clustering problem for the case K = 2, we now present a solution for hyperplanes in
C

K with arbitrary K by adapting the Generalized PCA algorithm of [15] to the complex
domain.

Eliminating feature segmentation. We first notice that each point z ∈ C
K , regardless

of which motion model {bi ∈ C
K}n

i=1 is associated with it, must satisfy the following
homogeneous polynomial of degree n in K complex variables

pn(z) =
n∏

i=1

(bT
i z) =

∑
I

cIz
I =

∑
cn1,...,nK

zn1
1 zn2

2 · · · znK

K = cT νn(z) = 0, (6)

where the coefficient vector c ∈ C
Mn(K) represents the multibody motion parameters.

Estimating multibody motion. Since the polynomial pn must be satisfied by all the
data points Z = {zj ∈ C

K}N
j=1, we obtain the following linear system on c

Lnc = 0 ∈ C
N , (7)

where Ln = [νn(z1), νn(z2), . . . , νn(zN )]T ∈ C
N×Mn(K). One can show that there is

a unique solution for c (up to a scale factor) if N ≥ Mn(K)−1 and at least K −1 points
belong to each hyperplane. Furthermore, since the last entry of each bi is equal to one,
then so is the last entry of c. Therefore, one can solve for c uniquely. In the presence of
noise, one can solve for c in a least-squares sense as the singular vector of Ln associated
with its smallest singular value, and then normalize so that cMn(K) = 1.
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Segmenting the multibody motion. Given c, we now present an algorithm for com-
puting the motion parameters bi from the derivatives of pn. To this end, we consider the
derivative of pn(z),

Dpn(z) =
∂pn(z)

∂z
=

n∑
i=1

∏
� �=i

(bT
� z)bi, (8)

and notice that if we evaluate Dpn(z) at a point z = yi that corresponds to the ith

motion model, i.e. if yi is such that bT
i yi = 0, then we have Dpn(yi) ∼ bi. Therefore,

given c we can obtain the motion parameters as

bi =
Dpn(z)

eT
KDpn(z)

∣∣∣∣
z=yi

, (9)

where eK = [0, . . . , 0, 1]T ∈ C
K and yi ∈ C

K is a nonzero vector such that bT
i yi = 0.

The rest of the problem is to find one vector yi ∈ C
K in each one of the hyperplanes

Hi = {z ∈ C
K : bT

i z = 0} for i = 1, . . . , n. To this end, notice that we can always
choose a point yn lying on one of the hyperplanes as any of the points in the data set
Z. However, in the presence of noise and outliers, an arbitrary point in Z may be far
from the hyperplanes. The question is then how to compute the distance from each data
point to its closest hyperplane, without knowing the normals to the hyperplanes. The
following lemma allows us to compute a first order approximation to such a distance:

Lemma 1. Let z̃ ∈ Hi be the projection of a point z ∈ C
K onto its closest hyperplane

Hi. Also let Π = (I − eKeT
K). Then the Euclidean distance from z to Hi is given by

‖z − z̃‖ =
|pn(z)|

‖ΠDpn(z)‖ + O
(‖z − z̃‖2). (10)

Therefore, we can choose a point in the data set close to one of the subspaces as:

yn = arg min
z∈Z

|pn(z)|
‖ΠDpn(z)‖ , (11)

and then compute the normal vector at yn as bn = Dpn(yn)/(eT
KDpn(yn)). In order to

find a point yn−1 in one of the remaining hyperplanes, we could just remove the points
on Hn from Z and compute yn−1 similarly to (11), but minimizing over Z \ Hn, and
so on. However, the above process is not very robust in the presence of noise. Therefore,
we propose an alternative solution that penalizes choosing a point from Hn in (11) by
dividing the objective function by the distance from z to Hn, namely |bT

nz|/‖Πbn‖.
That is, we can choose a point on or close to ∪n−1

i=1 Hi as

yn−1 = arg min
z∈Z

|pn(z)|
‖ΠDpn(z)‖ + δ

|bT
n z|

‖Πbn‖ + δ
, (12)

where δ > 0 is a small positive number chosen to avoid cases in which both the numerator
and the denominator are zero (e.g. with perfect data). By repeating this process for the
remaining hyperplanes, we obtain the following hyperplane clustering algorithm:
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Algorithm 1 (Clustering hyperplanes in C
K) Given data pointsZ = {zj ∈ C

K}N
j=1

solve for c ∈ C
Mn(K) from the linear system [νn(z1), νn(z2), . . . , νn(zN )]T c = 0;

set pn(z) = cT νn(z);
for i = n : 1,

yi = arg min
z∈Z

|pn(z)|
‖ΠDpn(z)‖ + δ

|bT
i+1z|···|bT

n z|
‖Πbi+1‖···‖Πbn‖ + δ

; bi =
Dpn(yi)

eT
KDpn(yi)

; (13)

end.

Notice that one could also choose the points yi in a purely algebraic fashion, e.g.,
by intersecting a random line with the hyperplanes, or else by dividing the polynomial
pn(z) by bT

nz. However, we have chosen to present Algorithm 1 instead, because it has
a better performance with noisy data and is not very sensitive to the choice of δ.

The case of translational optical flow. Imagine now that rather than a collection of
feature points we are given the optical flow {uj ∈ R

2}N
j=1 between two consecutive

views of a video sequence. If we assume that the optical flow is piecewise constant, i.e.
the optical flow of every pixel in the image takes only n possible values {Ti ∈ R

2}n
i=1,

then at each pixel j ∈ {1, . . . , N} there exists a motion Ti such that

uj = Ti. (14)

The problem is now to estimate the n motion models {Ti}n
i=1 from the optical flow

{uj}N
j=1. If N ≥ Mn(2) − 1 ∼ O(n), this problem can be solved using the same

technique as in the case of feature points (Algorithm 1 with K = 3) after replacing
x2 − x1 = u.

2.2 Segmentation of 2-D Similarity Motions: Clustering Hyperplanes in C
3

The case of feature points. In this case, we assume that for each feature point (x1, x2)
there exists a 2-D rigid-body motion (Ri, Ti) ∈ SE(2) and a scale λi ∈ R

+ such that

x2 = λiRix1 + Ti = λi

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
x1 + Ti. (15)

Therefore, if we interpret the rotation matrix as a unit number Ri = exp(θi

√−1) ∈
C, and the translation vector and the image features as points in the complex plane
Ti, x1, x2 ∈ C, then we can write the 2-D similarity motion model as the following
hyperplane in C

3:

bT
i z

.=
[
λiRi Ti 1

]

 x1

1
−x2


 = 0. (16)

Therefore, the segmentation of 2-D similarity motions is equivalent to clustering hy-
perplanes in C

3. As such, we can apply Algorithm 1 with K = 3 to a collection of



A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation 7

N ≥ Mn(3) − 1 ∼ O(n2) image measurements {zj ∈ C
3}N

j=1, with at least two
measurements per motion model, to obtain the motion parameters {bi ∈ C

3}n
i=1. The

original real motion parameters are then given as

λi = |bi1|, θi = ∠bi1, and Ti = [Re(bi2), Im(bi2)]T , for i = 1, . . . , n. (17)

The case of optical flow. Let {uj ∈ R
2}N

j=1 be N measurements of the optical flow
at the N pixels {xj ∈ R

2}N
j=1. We assume that the optical flow field can be modeled

as a collection of n 2-D similarity motion models as u = λiRix + Ti. Therefore, the
segmentation of 2-D similarity motions from measurements of optical flow can be solved
as in the case of feature points, after replacing x2 = u and x1 = x.

2.3 Segmentation of 2-D Affine Motions: Clustering Hyperplanes in C
4

The case of feature points. In this case, we assume that the images are related by a
collection of n 2-D affine motion models {Ai ∈ R

2×3}n
i=1. That is, for each feature pair

(x1, x2) there exist a 2-D affine motion Ai such that

x2 = Ai

[
x1
1

]
=

[
a11 a12 a13
a21 a22 a23

]
i

[
x1
1

]
. (18)

Therefore, if we interpret x2 as a complex number x2 ∈ C, but we still think of x1 as a
vector in R

2, then we have

x2 = aT
i

[
x1
1

]
=

[
a11 + a21

√−1 a12 + a22
√−1 a13 + a23

√−1
]
i

[
x1
1

]
. (19)

The above equation represents the following hyperplane in C
4

bT
i z =

[
aT

i 1
]

 x1

1
−x2


 = 0, (20)

where the normal vector bi ∈ C
4 encodes the affine motion parameters and the data

point z ∈ C
4 encodes the image measurements x1 ∈ R

2 and x2 ∈ C. Therefore, the
segmentation of 2-D affine motion models is equivalent to clustering hyperplanes in C

4.
As such, we can apply Algorithm 1 with K = 4 to a collection of N ≥ Mn(4) − 1 ∼
O(n3) image measurements {zj ∈ C

4}N
j=1, with at least three measurements per motion

model, to obtain the motion parameters {bi ∈ C
3}n

i=1. The original affine motion models
are then obtained as

Ai =
[

Re(bi1) Re(bi2) Re(bi3)
Im(bi1) Im(bi2) Im(bi3)

]
∈ R

2×3, for i = 1, . . . , n. (21)

The case of affine optical flow. In this case, the optical flow u is modeled as being
generated by a collection of n affine motion models {Ai ∈ R

2×3}n
i=1 of the form

u = Ai

[
x
1

]
. Therefore, the segmentation of 2-D affine motions can be solved as in the

case of feature points, after replacing x2 = u and x1 = x.
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3 3-D Motion Segmentation

3.1 Segmentation of 3-D Translational Motions: Clustering Hyperplanes in R
3

The case of feature points. In this case, we assume that the scene can be modeled as
a mixture of purely translational motion models, {Ti ∈ R

3}n
i=1, where Ti represents

the translation (calibrated case) or the epipole (uncalibrated case) of object i relative to
the camera between the two frames. A solution to this problem based on polynomial
factorization was proposed in [12]. Here we present a much simpler solution based on
polynomial differentiation.

Given the images x1 ∈ P
2 and x2 ∈ P

2 of a point in object i in the first and second
frame, they must satisfy the well-known epipolar constraint for linear motions

−xT
2 [Ti]×x1 = TT

i (x2 × x1) = TT
i � = 0, (22)

where � = (x2 × x1) ∈ R
3 is known as the epipolar line associated with the image

pair (x1, x2). Therefore, the segmentation of 3-D translational motions is equivalent to
clustering data (epipolar lines) lying on a collection of hyperplanes in R

3 whose normal
vectors are the n epipoles {Ti}n

i=1. As such, we can apply Algorithm 1 with K = 3 to
N ≥ Mn(3)−1 ∼ O(n2) epipolar lines {�j = xj

1 ×xj
2}N

j=1, with at least two epipolar
lines per motion, to estimate the epipoles {Ti}n

i=1 from the derivatives of the polynomial
pn(�) = (TT

1 �) · · · (TT
n �). The only difference is that in this case the last entry of each

epipole is not constrained to be equal to one. Therefore, when choosing the points yi in
equation (13) we should take Π = I not to eliminate the last coordinate. We therefore
compute the epipoles up to an unknown scale factor as

Ti = Dpn(yi)/‖Dpn(yi)‖, i = 1, . . . , n, (23)

where the unknown scale is lost under perspective projection.

The case of optical flow. In the case of optical flow generated by purely translating
objects we have uT [Ti]×x = 0, where u is interpreted as a three vector [u, v, 0]T ∈ R

3.
Thus, one can estimate the translations {Ti ∈ R

3}n
i=1 as before by replacing x2 = u

and x1 = x.

3.2 Segmentation of 3-D Rigid-Body Motions: Clustering Quadratic Forms in
R

3×3

Assume that the motion of the objects relative to the camera between the two views can
be modeled as a mixture of 3-D rigid-body motions {(Ri, Ti) ∈ SE(3)}n

i=1 which are
represented with a nonzero rank-2 fundamental matrix Fi. A solution to this problem
based on the factorization of bi-homogeneous polynomials was proposed in [14]. Here
we present a much simpler solution based on taking derivatives of the so-called multibody
epipolar constraint (see below), thus avoiding polynomial factorization.

Given an image pair (x1, x2), there exists a motion i such that the following epipolar
constraint is satisfied

xT
2 Fix1 = 0. (24)
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Therefore, the following multibody epipolar constraint [14] must be satisfied by the
number of independent motions n, the fundamental matrices {Fi}n

i=1 and the image
pair (x1, x2), regardless of the object to which the image pair belongs

pn(x1, x2)
.=

n∏
i=1

(
xT

2 Fix1
)

= 0. (25)

It was also shown in [14] that the multibody epipolar constraint can be written in bilinear
form as νn(x2)T Fνn(x1) = 0, where F ∈ R

Mn(3)×Mn(3) is the so-called multibody
fundamental matrix, which can be linearly estimated from N ≥ Mn(3)2 − 1 ∼ O(n4)
image pairs in general position with at least 8 pairs corresponding to each motion.

We now present a new solution to the problem of estimating the fundamental matrices
{Fi}n

i=1 from the multibody fundamental matrix F based on taking derivatives of the
multibody epipolar constraint. Recall that, given a point x1 ∈ P

2 in the first image
frame, the epipolar lines associated with it are defined as �i

.= Fix1 ∈ R
3, i = 1, . . . , n.

Therefore, if the image pair (x1, x2) corresponds to motion i, i.e. if xT
2 Fix1 = 0, then

∂

∂x2
νn(x2)T Fνn(x1) =

n∑
i=1

∏
� �=i

(xT
2 F�x1)(Fix1) =

∏
� �=i

(xT
2 F�x1)(Fix1) ∼ �i. (26)

In other words, the partial derivative of the multibody epipolar constraint with respect to
x2 evaluated at (x1, x2) is proportional to the epipolar line associated with (x1, x2) in
the second view.1 Therefore, given a set of image pairs {(xj

1, x
j
2)}N

j=1 and the multibody
fundamental matrix F ∈ R

Mn(3)×Mn(3), we can estimate a collection of epipolar lines
{�j}N

j=1. Remember from Section 3.1 that in the case of purely translating objects the
epipolar lines were readily obtained as x1 × x2. Here the calculation is more involved
because of the rotational component of the rigid-body motions. Nevertheless, given a
set of epipolar lines we can apply Algorithm 1 with K = 3 and Π = I to estimate the
n epipoles {Ti}n

i=1 up to a scale factor, as in equation (23). Therefore, if the n epipoles
are different,2 then we can immediately compute the n fundamental matrices {Fi}n

i=1
by assigning the image pair (xj

1, x
j
2) to group i if i = arg min�=1,...n(TT

i �j)2 and then
applying the eight-point algorithm to the image pairs in group i = 1, . . . , n.

3.3 Segmentation of 3-D Homographies: Clustering Quadratic Forms in C
2×3

The motion segmentation scheme described in the previous section assumes that the
displacement of each object between the two views relative to the camera is nonzero,
i.e. Ti 
= 0, otherwise the individual fundamental matrices are zero. Furthermore, it also

1 Similarly, the partial derivative of the multibody epipolar constraint with respect to x1 evaluated
at (x1, x2) is proportional to the epipolar line associated with (x1, x2) in the first view.

2 Notice that this is not a strong assumption. If two individual fundamental matrices share the
same (left) epipoles, one can consider the right epipoles (in the first image frame) instead,
because it is extremely rare that two motions give rise to the same left and right epipoles. In
fact, this happens only when the rotation axes of the two motions are equal to each other and
parallel to the translation direction [14].
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requires that the 3-D points be in general configuration, otherwise one cannot uniquely
recover each fundamental matrix from its epipolar constraint. The latter case occurs, for
example, in the case of planar structures, i.e. when the 3-D points lie on a plane [16].

Both in the case of purely rotating objects (relative to the camera) or in the case of
a planar 3-D structure, the motion model between the two views x1 ∈ P

2 and x2 ∈ P
2

is described by a homography matrix H ∈ R
3×3 such that [16]

x2 ∼ Hx1 =


h11 h12 h13

h21 h22 h23
h31 h32 h33


x1. (27)

Consider now the case in which we are given a set of image pairs {(xj
1, x

j
2)}N

j=1 that
can be modeled with n independent homographies {Hi}n

i=1 (see Remark 2). Note that
the n homographies do not necessarily correspond to n different rigid-body motions.
This is because it could be the case that one rigidly moving object consists of two or more
planes, hence its rigid-body motion will lead to two or more homographies. Therefore,
the n homographies can represent anything from 1 up to n rigid-body motions. In either
case, it is evident from the form of equation (27) that we cannot take the product of
all the equations, as we did with the epipolar constraints, because we have two linearly
independent equations per image pair. Nevertheless, we show now that one can still solve
the problem by working in the complex domain, as we describe below.

We interpret the second image x2 ∈ P
2 as a point in CP by considering the first two

coordinates in x2 as a complex number and appending a one to it. However, we still
think of x1 as a point in P

2. With this interpretation, we can rewrite (27) as

x2 ∼ Hx1
.=

[
h11 + h21

√−1 h12 + h22
√−1 h13 + h23

√−1
h31 h32 h33

]
x1, (28)

where H ∈ C
2×3 now represents a complex homography3. Let w2 be the vector in CP

perpendicular to x2, i.e. if x2 =(z, 1) then w2 = (1, −z). Then we can rewrite (28) as
the following complex bilinear constraint

wT
2 Hx1 = 0, (29)

which we call the complex homography constraint. We can therefore interpret the motion
segmentation problem as one in which we are given image data {xj

1 ∈ P
2}N

j=1 and

{wj
2 ∈CP}N

j=1 generated by a collection of n complex homographies {Hi ∈C
2×3}n

i=1.
Then each image pair (x1, w2) has to satisfy the multibody homography constraint

n∏
i=1

(wT
2 Hix1) = νn(w2)T Hνn(x1) = 0, (30)

regardless of which one of the n complex homographies is associated with the image
pair. We call the matrix H ∈ C

Mn(2)×Mn(3) the multibody homography. Now, since the
multibody homography constraint (30) is linear in the multibody homography H, we

3 Strictly speaking, we embed each real homography matrix into an affine complex matrix.
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can linearly solve for H from (30) given N ≥ Mn(2)Mn(3)−(Mn(3)+1)/2 ∼ O(n3)
image pairs in general position4 with at least 4 pairs per moving object.

Given the multibody homography H ∈ C
Mn(2)×Mn(3), the rest of the problem is

to recover the individual homographies {Hi}n
i=1. In the case of fundamental matrices

discussed in Section 3.2, the key for solving the problem was the fact that fundamental
matrices are of rank 2, hence one can cluster epipolar lines based on the epipoles. In
principle, we cannot do the same with real homographies Hi ∈ R

3×3, because in general
they are full rank. However, if we work with complex homographies Hi ∈ C

2×3 they
automatically have a right null space which we call the complex epipole ei ∈ C

3. Then,
similarly to (26), we can associate a complex epipolar line

�j ∼ ∂νn(w2)T Hνn(x1)
∂x1

∣∣∣∣
(x1,w2)=(xj

1,wj
2)

∈ CP
2 (31)

with each image pair (xj
1, w

j
2). Given this set of N ≥ Mn(3) − 1 complex epipolar

lines {�j}N
j=1, with at least 2 lines per moving object, we can apply Algorithm 1 with

K = 3 and Π = I to estimate the n complex epipoles {ei ∈ C
3}n

i=1 up to a scale
factor, as in equation (23). Therefore, if the n complex epipoles are different, we can
cluster the original image measurements by assigning image pair (xj

1, x
j
2) to group i if

i = arg min�=1,...,n |eT
� �j |2. Once the image pairs have been clustered, the estimation

of each homography, either real or complex, becomes a simple linear problem.

Remark 1 (Direct extraction of homographies from H). There is yet another way to
obtain individual Hi from H without segmenting the image pairs first. Once the complex
epipoles ei are known, one can compute the following linear combination of the rows
of Hi (up to scale) from the derivatives of the multibody homography constraint at ei

wT Hi ∼ ∂νn(w)T Hνn(x)
∂x

∣∣∣∣
x=ei

∈ CP
2, ∀w ∈ C

2. (32)

In particular, if we take w = [1, 0]T and w = [0, 1]T we obtain the first and second row
of Hi (up to scale), respectively. By choosing additional w’s one obtains more linear
combinations from which the rows of Hi can be linearly and uniquely determined.

Remark 2 (Independent homographies). The above solution assumes that the complex
epipoles are different (up to a scale factor). We take this assumption as our definition of
independent homographies, even though it is more restrictive than saying than the real
homographies Hi ∈ R

3×3 are different (up to a scale factor). However, one can show
that, under mild conditions, e.g., the third rows of each Hi are different, the null spaces
of the complex homographies are indeed different for different real homographies.5

4 The multibody homography constraint gives two equations per image pair, and there are
(Mn(2) − 1)Mn(3) complex entries in H and Mn(3) real entries (the last row).

5 The set of complex homographies that share the same null space is a five-dimensional subset
(hence a zero-measure subset) of all real homography matrices. Furthermore, one can com-
plexify any other two rows of H instead of the first two. As long as two homography matrices
are different, one of the complexifications will give different complex epipoles.
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Remark 3 (One rigid-body motion versus multiple ones). A homography is generally
of the form H = R + TπT where π is the plane normal. If the homographies come
from different planes (different π) undergoing the same rigid-body motion, the proposed
scheme would work just fine since different normal vectors π will cause the complex
epipoles to be different. However, if multiple planes with the same normal vector π =
[0, 0, 1]T undergo pure translational motions of the form Ti = [Txi, Tyi, Tzi]T , then
all the complex epipoles are equal to ei = [

√−1, −1, 0]T . To avoid this problem, one
can complexify the first and third rows of H instead of the first two. The new complex
epipoles are ei=[Txi+Tzi

√−1, Tyi, −1]T , which are different for different translations.

4 Experiments on Real and Synthetic Images

2-D translational. We tested our polynomial differentiation algorithm (PDA) by seg-
menting 12 frames of a sequence consisting of an aerial view of two robots moving on
the ground. The robots are purposely moving slowly, so that it is harder to distinguish the
flow from the noise. At each frame, we applied Algorithm 1 with K = 2 and δ = 0.02
to the optical flow6 of all N = 240 × 352 pixels in the image and segmented the image
measurements into n = 3 translational motion models. The leftmost column of Figure 1
displays the x and y coordinates of the optical flow for frames 4 and 10, showing that
it is not so simple to distinguish the three clusters from the raw data. The remaining
columns of Figure 1 show the segmentation of the image pixels. The motion of the two
robots and that of the background are correctly segmented. We also applied Algorithm 1
to the optical flow of the flower garden sequence. Figure 2 shows the optical flow of one
frame and the segmentation of the pixels into three groups: the tree, the grass, and the
background. Notice that the boundaries of the tree can be assigned to any group, and in
this case they are grouped with the grass.
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Fig. 1. Segmenting the optical flow of the two-robot sequence by clustering lines in C
2

6 We compute optical flow using Black’s code at
http://www.cs.brown.edu/people/black/ignc.html.
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Fig. 2. Segmenting the optical flow of the flower-garden sequence by clustering lines in C
2

3-D translational motions. Figure 3(a) shows the first frame of a 320 × 240 video
sequence containing a truck and a car undergoing two 3-D translational motions. We
applied Algorithm 1 with K = 3, Π = I and δ = 0.02 to the (real) epipolar lines
obtained from a total of N = 92 features, 44 in the truck and 48 in the car. The algorithm
obtained a perfect segmentation of the features, as shown in Figure 3(b), and estimated
the epipoles with an error of 5.9◦ for the truck and 1.7◦ for the car. We also tested
the performance of PDA on synthetic data corrupted with zero-mean Gaussian noise
with s.t.d. between 0 and 1 pixels for an image size of 500×500 pixels. For comparison
purposes, we also implemented the polynomial factorization algorithm (PFA) of [12] and
a variation of the Expectation Maximization algorithm (EM) for clustering hyperplanes
in R

3. Figures 3(c) and (d) show the performance of all the algorithms as a function of
the level of noise for n = 2 moving objects. The performance measures are the mean
error between the estimated and the true epipoles (in degrees), and the mean percentage
of correctly segmented features using 1000 trials for each level of noise. Notice that

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Noise level [pixels]

Tr
an

sl
at

io
n 

er
ro

r [
de

gr
ee

s]

PFA
PDA
EM
PDA+EM

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Noise level [pixels]

Tr
an

sl
at

io
n 

er
ro

r [
de

gr
ee

s]

n=1
n=2
n=3
n=4

(a) First frame (c) Translation error n = 2 (e) Translation error
n = 1, . . . , 4

1 44 92

trk

car

0 0.2 0.4 0.6 0.8 1
92

94

96

98

100

Noise level [pixels]

C
or

re
ct

 c
la

ss
ifi

ca
tio

n 
[%

]

PFA
PDA
EM
PDA+EM

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

100

Noise level [pixels]

C
or

re
ct

 c
la

ss
ifi

ca
tio

n 
[%

]

n=1
n=2
n=3
n=4

(b) Feature segmentation (d) % of correct classif. n = 2 (f) % of correct classif.
n = 1, . . . , 4

Fig. 3. Segmenting 3-D translational motions by clustering planes in R
3. Left: segmenting a real

sequence with 2 moving objects. Center: comparing our algorithm with PFA and EM as a function
of noise in the image features. Right: performance of PFA as a function of the number of motions
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PDA gives an error of less than 1.3◦ and a classification performance of over 96%.
Thus our algorithm PDA gives approximately 1/3 the error of PFA, and improves the
classification performance by about 2%. Notice also that EM with the normal vectors
initialized at random (EM) yields a nonzero error in the noise free case, because it
frequently converges to a local minimum. In fact, our algorithm PDA outperforms EM.
However, if we use PDA to initialize EM (PDA+EM), the performance of both EM and
PDA improves, showing that our algorithm can be effectively used to initialize iterative
approaches to motion segmentation. Furthermore, the number of iterations of PDA+EM
is approximately 50% with respect to EM randomly initialized, hence there is also a gain
in computing time. Figures 3(e) and (f) show the performance of PDA as a function of
the number of moving objects for different levels of noise. As expected, the performance
deteriorates with the number of moving objects, though the translation error is still below
8◦ and the percentage of correct classification is over 78%.

3-D homographies. Figure 4(a) shows the first frame of a 2048×1536 video sequence
with two moving objects: a cube and a checkerboard. Notice that although there are only
two rigid motions, the scene contains three different homographies, each one associated
with each one of the visible planar structures. Furthermore, notice that the top side of
the cube and the checkerboard have approximately the same normals. We manually
tracked a total of N = 147 features: 98 in the cube (49 in each of the two visible sides)
and 49 in the checkerboard. We applied our algorithm in Section 3.3 with Π = I and
δ = 0.02 to segment the image data and obtained a 97% of correct classification, as
shown in Figure 4(b). We then added zero-mean Gaussian noise with standard deviation
between 0 and 1 pixels to the features, after rectifying the features in the second view in
order to simulate the noise free case. Figure 4(c) shows the mean percentage of correct
classification for 1000 trials per level of noise. The percentage of correct classification
of our algorithm is between 80% and 100%, which gives a very good initial estimate for
any of the existing iterative/optimization/EM based motion segmentation schemes.
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Fig. 4. Segmenting 3-D homographies by clustering complex bilinear forms in C
2×3
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5 Conclusions

We have presented a unified algebraic approach to 2-D and 3-D motion segmentation
from feature correspondences or optical flow. Contrary to extant methods, our approach
does not iterate between feature segmentation and motion estimation. Instead, it com-
putes a single multibody motion model that is satisfied by all the image measurements
and then extracts the original motion models from the derivatives of the multibody one.
Various experiments showed that our algorithm not only outperforms existing algebraic
methods with much limited applicability, but also provides a good initialization for
iterative techniques, such as EM, which are strongly dependent on correct initialization.
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