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Abstract. Existing methods for incorporating subspace model constraints in con-
tour tracking use only partial information from the measurements and model dis-
tribution. We propose a complete fusion formulation for robust contour tracking,
optimally resolving uncertainties from heteroscedastic measurement noise, system
dynamics, and a subspace model. The resulting non-orthogonal subspace projec-
tion is a natural extension of the traditional model constraint using orthogonal
projection. We build models for coupled double-contours, and exploit informa-
tion from the ground truth initialization through a strong model adaptation. Our
framework is applied for tracking in echocardiograms where the noise is het-
eroscedastic, each heart has distinct shape, and the relative motions of epi- and
endocardial borders reveal crucial diagnostic features. The proposed method sig-
nificantly outperforms the traditional shape-space-constrained tracking algorithm.
Due to the joint fusion of heteroscedastic uncertainties, the strong model adapta-
tion, and the coupled tracking of double-contours, robust performance is observed
even on the most challenging cases.

1 Introduction

Model constraints can significantly improve the performance of a contour tracking al-
gorithm. In most cases, a subspace model is appropriate since the number of modes
capturing the major shape variations is limited and usually much smaller than the origi-
nal number of feature components used to describe the shape [1]. A traditional treatment
is to project into a PCA subspace [2,1]. However, this approach does not take advantage
of heteroscedastic (i.e., both anisotropic and inhomogeneous) measurement uncertainties
[3,4] (See Figure 1). Intuitively, a tracking algorithm should downplay measurements
from uncertain regions when consulting a shape model.

A more interesting solution was to directly incorporate a PCA shape space constraint
into a Kalman filter-based tracker. In [7,8], the proposal was to set the system noise co-
variance matrix to be the covariance of a PCA shape model. Nevertheless, this treatment
has some limitations. First of all, it did not provide a systematic and complete fusion of
the model information because, for example, the model mean is discarded(–as a result,
the projection can be arbitrarily far from the model mean in the subspace). Secondly,
it mixes the uncertainty from system dynamics with the uncertainty from the statistical
shape constraint, while these two can be conceptually different. For example, we may
want to use the dynamic model to capture different modes of global rigid motion, while
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(a) (b)

Fig. 1. Ellipses depicting uncertainties in feature localization and motion estimation. The het-
eroscedastic nature stems from either the aperture problem [4,5], or for echocardiograms (b), the
acoustic drop-out [6].

applying a statistical shape model to control the modes and range of shape variations.
Finally, existing solutions do not specifically address the issue of heteroscedastic mea-
surement noise and its influence during the fusion with other information sources. When
measurement noise is anisotropic and inhomogeneous, joint fusion of all information
sources becomes critical for achieving reliable performance.

We decouple the uncertainty in system dynamics and the statistical shape constraint,
and introduce a unified framework for fusing a subspace shape model with the system
dynamics and the measurements with heteroscedastic noise. We build models for cou-
pled double-contours so that more information can be integrated especially for very
noisy data. The double-contour also achieves better preservation of topology1. To ac-
commodate individual shape characteristics, the generic shape model is strongly adapted
using information given about the current case. The subspace model can take the form
of a specific subspace distribution, e.g., a Gaussian, or a simple subspace constraint,
e.g., the eigenspace model [2,12]. Unlike existing ad hoc formulations, our framework
treats the two cases in a consistent way, and combines such constraints seamlessly into
the tracking framework. The new approach calls for reliable estimation of measurement
uncertainties, for which we employ a recent robust solution to the motion estimation
problem, which also computes the motion flow uncertainties [13].

The paper is organized as follows: The new model-constrained tracking formulation
is presented in Section 2. Section 3 discusses a model adaptation scheme. Section 4
contains experimental evaluation and analysis. Related work and future directions are
discussed in Sections 5 and 6, respectively.

2 Model Constraint through Projection and Fusion

Throughout this paper, we represent shapes by control or landmark points, assuming
correspondence. These points are fitted by splines before shown to the user. For more
implementation details, please refer to Section 4.

1 Our coupling is probabilistic (governed by the training set) and “soft”(See Section 4.4). For
deterministic coupling, “soft” or “hard”, please refer to [9,10,11] and the references therein.
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A typical tracking framework fuses information from the dynamic prediction and
from noisy measurements. For shape tracking, additional constraints are necessary to
stabilize the overall shape in a feasible space/range. In this section, we first extend the
traditional subspace constraint using orthogonal projection to non-orthogonal projection.
Then, we show that with a complete subspace model constraint, considering also the
model mean, this can be further generalized into an information fusion formulation.
Finally, these formulas are uniformly combined into a tracking framework.

2.1 Non-orthogonal Projection for Heteroscedastic Noise

Given an n-dimensional measurement point2, x, with uncertainty characterized by a
covariance matrix C, we want to find the “closest” point y∗ in a p-dimensional (p < n)
subspace, with its axes defined by the orthonormal column vectors of an n × p matrix,
Up, UT

p Up = I, such that the Mahalanobis distance is minimized, i.e., y∗ = argmin
d2, where

d2 = (Upy − x)T C−1(Upy − x). (1)

This is in the form of a weighted least square ([14], p. 386). By taking derivative of
above with respect to y and setting it to 0, we have

y∗ = Cy∗UT
p C−1x, Cy∗ = (UT

p C−1Up)−1. (2)

In general, this is a non-orthogonal projection. It is easy to show that the Gaussian
N (y∗,Cy∗) is the conditional distribution, or intersection, of x in the subspace. Only
when C = cI with some positive scaler c, we have

y∗ = (c−1UT
p IUp)−1UT

p (cI)−1x = UT
p x, Cy∗ = cIp (3)

In our application, this means that all control points on the contour have isotropic and
homogeneous uncertainties and the solution reduces to classical orthogonal projection.

2.2 Incorporating Model Distribution through Subspace Fusion

In the above we only considered the subspace constraint while the actual model distri-
bution (assumed Gaussian with mean and covariance) represents important prior infor-
mation that should not be discarded. In the sequel we show that an information fusion
formulation unifies all cases within a general maximal likelihood framework.

The information space is the space obtained by multiplying a vector by its corre-
sponding information matrix, which is, in the Gaussian case, the inverse of the error
covariance matrix. Given two noisy measurements of an n-dimensional variable x, each
with a Gaussian distribution, N (x1,C1) and N (x2,C2), the maximum likelihood es-
timate of x is the point with the minimal sum of Mahalanobis distances, D2(x,xi,Ci)
= (x − xi)T C−1

i (x − xi) , to the two centroids, i.e., x∗ = argmin d2 with

d2 = (x − x1)T C−1
1 (x − x1) + (x − x2)T C−1

2 (x − x2) (4)

2 Care should be taken to avoid confusion over the interpretation of the term “point”: the point
here would correspond to a contour with multiple control points. By “inhomogeneous” noise,
we refer to the inhomogeneity among different control points [4].
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Taking derivative with respect to x and setting it to zero, we get:

x∗ = C(C−1
1 x + C−1

2 x2), C = (C−1
1 + C−1

2 )−1 (5)

which is also known as the best linear unbiased estimate (BLUE) of x ([15,16]).
When one of the Gaussians is in a subspace of dimension p, e.g., C2 is singular, the

second term of Eq. (4) can be re-written using pseudoinverse of C2, C+
2 :

D2(x,x2,C2) =
p∑

i=1

λ−1
i [UT

p (x − x2)]2 ≡ (x − x2)T C+
2 (x − x2) (6)

with the additional constraint of UT
0 x = 0 (otherwise, d will diverge). Here C2 =

UΛUT , U = [u1,u2, . . .,un], Up = [u1,u2, . . .,up], U0 = [up+1,up+2, . . .,un],
with ui’s orthonormal and Λ = diag{λ1, λ2, . . ., λp, 0, . . ., 0}. (Here we have assumed,
without loss of generality, that the subspace passes through the origin of the original
space.)

With UT
0 x = 0, x resides in the subspace as y = UT

p x. Eq. (4) now takes the
following general form:

d2 = (Upy − x1)T C−1
1 (Upy − x1) + (Upy − x2)T C+

2 (Upy − x2) (7)

Taking derivative with respect to y yields the fusion estimator for the subspace:

y∗ = Cy∗UT
p (C−1

1 x1 + C+
2 x2), Cy∗ = [UT

p (C−1
1 + C+

2 )Up]−1 (8)

Equivalent expressions can be obtained in the original space as:

x∗ = Upy∗ = Cx∗(C−1
1 x1 + C+

2 x2), Cx∗ = UpCy∗UT
p (9)

It is easy to show that Cx∗ and Cy∗ are the covariance matrices for x∗ and y∗.
Alternatively, we can write Eq. (8) as

y∗ = (UT
p C−1

1 Up + Λ−1
p )−1(UT

p C−1
1 x1 + Λ−1

p y2) (10)

Here y2 = UT
p x2, and Λp = diag{λ1 , λ2 , . . ., λp}. Interestingly, Eq. (10) is in

fact the BLUE fusion of two subspace Gaussian distributions, one being N (y2, Λp)
and the other being the non-orthogonal projection of N (x1, C1) in the subspace,
N ((UT

p C−1
1 Up)−1UT

p C−1
1 x1, (UT

p C−1
1 Up)−1) (cf. Eq. (2)).

2.3 Constrained Tracking through Fusion and Projection

To integrate the above projection and fusion formulas into a tracking framework, we first
note that Kalman filter is essentially fusion in nature, which is evident in its information
filter form ([17], page 138), which :

xk+1|k+1 = (P−1
k+1|k + HT R−1H)−1(P−1

k+1|kxk+1|k + HT R−1zk+1) (11)

Here xi|j is the state estimate at time i given the state or measurement at time j, P
is the state covariance, and H is the measurement matrix. The measurement model is
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zk = Hxk + rk, where rk represents measurement noise with covariance R. P is
recursively updated as Pk+1|k = SPk|kST + Q using information from a dynamic
system model xk+1 = Sxk + qk, where qk represents system noise with covariance Q
[17].

For the special case where H is a square matrix and admits an inverse, we can
see Eq. (11) in a strict information fusion form, namely, the fusion of prediction and
measurement in the information space (cf. Eq. (5)):

xk+1|k+1 = (P−1
k+1|k + R−1

x )−1
[
P−1

k+1|kxk+1|k + R−1
x xz,k+1

]
(12)

where Rx = H−1R(H−1)T and xz,k+1 = H−1zk+1.
Because Kalman filter is a fusion filter and the information fusion operation is as-

sociative, we can apply the subspace fusion formula, Eq. (8), on the Kalman fusion
result of Eq. (11) (In general H is not invertible; otherwise, Eq. (12) can be used.) and
a subspace source N (x2,C2), to obtain a complete fusion formula:

xk+1|k+1 = Pk+1|k+1((SPk|kST + Q)+xk+1|k + HT R−1zk+1 + C+
2 x2) (13)

Pk+1|k+1 = Up[UT
p ((SPk|kST + Q)+ + HT R−1H + C+

2 )Up]−1UT
p (14)

Observe the symmetry of the solution which combines all the available knowledge in
the information space. These equations provide a unified fusion of the system dynamics,
a subspace model, and measurement noise information. They represent the complete
representation of various uncertainties that affect the tracking system.

Compared to a PCA shape space representation [7,8], the above formulation uses not
only the model subspace (the eigenvectors), but also the actual model distribution, in a
unified fusion framework. On the other hand, if only a subspace constraint is desired, we
can simply apply the special case of Eq. (2) on Eq. (11), and the resulting non-orthogonal
projection is still within the same analytical framework.

3 Updating Shape Model: Fusion versus Model Adaptation

The use of a model learned from a pool of training samples to guide a specific case is
inherently problematic, especially when novel variations commonly appear. Theoreti-
cally, what we really need is the deformation model of the current case. Therefore, there
is a strong need to update the generic model to reflect what is already known for the
current case. A natural choice is to use the initial contour (by hand or through automatic
detection) to update the existing model. In the context of the preceding sections, an
intriguing question would be why don’t we use fusion on the model and the new contour
by assigning some covariance C = αI for the new contour? The answer turns out to be
negative and we will get to the reasons at the end of this section.

An alternative tool is incremental PCA (IPCA) [18], but this strategy does not adapt
in a sufficiently strong manner. Therefore, we put more emphasis on the new data,
and apply a strongly-adapted-PCA (SA-PCA) model as follows: We assume that the
existing PCA model and the initial contour from the current new case jointly represent
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the variations of the current case, but with relative energy, or representative power, being
α and (1 − α), respectively, with 0 < α < 1.

If the original covariance matrix C were stored (when the original dimensionality
is not forbiddingly high), the adapted mean xnew

m and covariance matrix Cnew would
simply be the weighted sum of the two contributing sources:

xnew
m = αxm + (1 − α)x (15)

Cnew =α(C + (xm − xnew
m )(xm − xnew

m )T ) + (1 − α)(x − xnew
m )(x − xnew

m )T

=αC + α(1 − α)(x − xm)(x − xm)T (16)

Eigenanalysis can be performed on Cnew to obtain the new subspace model.
A more interesting and practical scenario is when C is not stored and {xm, Λ,U}

resides only in the subspace. Denote the subspace component of x as xs = UT xd,
where xd = x − xm, and the residual vector as xr = (x − xm) − Uxs. Let xru be the
normalized unit vector of xr. Through straight algebraic manipulations we can arrive
at the adapted eigenanalysis results {xnew

m , Λnew, Unew} with Unew = [U,xru]R,
where R and Λnew are solutions to the following eigenanalysis problem:

(
α

[
Λ 0
0T 0

]
+ α(1 − α)

[
xsxT

s erxs

erxT
s e2

r

])
R = RΛnew (17)

where er = xT
ru(x − xm) is the residual energy.

The above formulas are extensions of IPCA or eigenspace merging formula of [18],
with tunable energy ratios between the new data and the old data. With α set at a smaller
value (we use 0.5), the PCA model is strongly adapted toward the current case, hence
the name. Now we are ready to point out the differences between fusion and IPCA or
SA-PCA. First of all, a fused model cannot break out of the subspace, while IPCA or
SA-PCA can. More fundamentally, fusion provides the “intersection” of the information
sources [19], while IPCA or SA-PCA yield some “union” of the sources. We need to
augment instead of constrain the generic model, so fusion is not the proper choice.

With SA-PCA, our framework now incorporates four information sources: the system
dynamic, measurement, subspace model, and the initial contour. This last addition is
especially useful for periodic shape deformations such as cardiac motion.

4 Implementation, Evaluation, and Analysis

In this paper we test the proposed framework using ultrasound heart sequences. Ultra-
sound is the noisiest among common medical imaging modalities such as MRI or CT.
Echocardiogram (ultrasound heart images) is even worse due to the fast motion of the
heart muscle and respiratory interferences [6]. With spatially varying noise characteris-
tics, echocardiograms are ideal for testing our heteroscedastic fusion framework.
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Fig. 2. The dominant eigenshapes for: (a,b) single contour; (c,d) coupled contours; (a,c) Apical
views; (b,d) Short axis views. The dashed curves are the model mean.

4.1 Tracking in Echocardiography

We use manually traced left ventricle borders in echocardiography images as the training
set. Both apical two- or four-chamber views and parasternal long and short axis views
are trained and tested. Landmark points are assigned based on anatomic features (apex,
papillary muscles, and septum, etc.). The algorithm can tolerate some variability on the
location of the landmark points, partly due to the application of SA-PCA.

The training contours are aligned using the iterative Procrustes analysis approach
described by Cootes and Taylor [20] to cancel out global translation, rotation and scaling.
PCA is then performed and the original dimensionality is reduced to retain 80-97% of
energy, separately tuned for each model. Figure 2 shows the dominant eigenshapes
(without splining) for two views along with their model means trained on about 200
contours each for both single and double-contours. A double-contour is treated as a
single point in a high-dimensional space.

During testing we assume manual initialization on the first frame, and use a simple
dynamic model to impose a temporal smoothness constraint. Without prior knowledge,
we employ a diagonal matrix to model the uncertainty in system dynamics, and set the
relative confidence of this model empirically. Since we perform alignment on the train-
ing shapes before the PCA, at each tracking step the model is aligned to the fusion result
{x̃, C̃} using the measurement and the dynamic model. We adopt the optimal trans-
formation To which minimizes a weighted sum-of-squares measure of point difference
subject to translation, rotation and scaling ([20], p. 102), with the weighting matrix being
C̃−1. The system transforms the model mean as well as the model covariance using To

before the final fusion.

4.2 Motion Estimation with Uncertainty

To measure the motion of each of the control points we use an adaptation of the frame-to-
frame motion estimation algorithm described in [13], which has been shown to be very
competitive in terms of performance evaluation using standard sequences. We present
in the sequel a summary of the algorithm. For more details, see [13].

The main idea is that the motion in a certain neighborhood can be robustly estimated
as the most significant mode of some initial motion estimates (expressed by mean vectors
and associated covariance matrices). The most significant mode is defined by mode
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Fig. 3. The 95% confidence ellipses corresponding to the local measurement uncertainty on each
control point. The first image shows a single contour for endocardium. The other two show coupled
double contours for both endocardium and epicardium.

tracking across scales, while the underlying mechanism for mode detection relies on the
variable-bandwidth mean shift [21].

In the current work, for each control point we compute initial estimates using 17×17
windows and fuse the results on n = 5 × 5 neighborhoods. A pyramid of three levels
is employed with covariance propagation across levels. Figure 3 depicts the uncertainty
calculated at the bottom of the pyramid for the contour points.

To avoid error accumulation from frame to frame, the motion is always computed
with reference to the neighborhood of the control point in the first frame of the sequence
(i.e., the current frame is always compared to a model extracted from the first frame).
Since we update the location of the model at each frame, the motion estimation process
always starts with a good initialization, hence the error accumulation is canceled. The
overall procedure is suitable for the tracking of periodic sequences such as the heart
ultrasound data. It resembles to a template-based tracker, which benefits from the fast
computation of frame-to-frame motion.

4.3 Performance Evaluation and Analysis

For systematic evaluation, a set of 30 echocardiogram sequences are used for testing,
including parasternal long- and short-axis views and apical two- or four-chamber (AC)
views, all with expert-annotated ground-truth contours.

We use two distance measures: the Mean Sum of Squared Distance (MSSD) [22]
and the Mean Absolute Distance (MAD) [23]. With consistent results, we report MSSD
only in this paper. For the sequence Si with m frames, {c1, ..., cm}, where each contour
cj has n points {(xj,1, yj,1),. . .,(xj,n, yj,n)}, the distances to the ground truth S0

i are

MSSDi =
1
m

m∑

j=1

MSSDi,j =
1
m

m∑

j=1

1
n

n∑

k=1

((xj,k − x0
j,k)2 + (yj,k − y0

j,k)2) (18)

The overall performance measure for a particular method is the averaged distance
on the whole test set of l sequences. A critical difference between our distance measures
and those of [22] or [23] is that we have the point correspondence through tracking. As a
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Fig. 4. (a) MSSD histograms over the test set; (b) MSSD curves for the 30 test sequences.

result, we could capture tangent motion components along the contour which can reveal
crucial information about cardiac function.

Our proposed framework is compared to three alternatives. The first is a tracker based
on the optical flow algorithm without shape constraint (“FlowRaw”) [13]. The second
approach is the same tracker but adding orthogonal PCA shape space constraints [8,20,
7](“FlowShapeSpace”). The third is “FlowShapeSpace” but using our SA-PCA model
(“FlowSAPCA”) Figure 4 shows the comparison of these methods. Our proposed method
(“Proposed”) significantly outperforms others, with an average MSSD of 7.4 (σ = 12.3)
as opposed to 24.3 (σ = 35.4) by the current approach (“FlowShapeSpace”). Our SA-
PCA model alone (“FlowSAPCA”) already brought significant improvement, achieving
an average MSSD of 20.4 (σ = 32.8). The fusion alone (without SA-PCA) had an
average MSSD of 18.4 (σ = 22.7). The MSSD of “FlowRaw” is 38.2 (σ = 83.7). The
combined use of fusion and SA-PCA (i.e., “Proposed”) has apparently brought out a
significant performance boost over each alone. Figure 5 shows some tracked sequences.
Please also refer to the supplementary videos.

When the measurement process makes a large error in a drop-out or high-noise
region, the corresponding localization uncertainty is usually high as well, due to the lack
of trackable patterns. Our fusion can correct such errors to a larger extent than what an
orthogonal projection can do. This is illustrated by an example in Figure 6.

Our SA-PCA model is especially helpful for shapes that differ significantly from the
training set. Figure 7 shows a comparison of IPCA and SA-PCA. In this example, we
deliberately used a “wrong” model, i.e., we use the model for apical four chamber (A4C)
views (see Figure 2a) to constrain the tracking of this parasternal long axis (PLA) view.
PLA views have distinctive patterns that are not seen in apical views (e.g., the upper
concave portion). The incremental PCA model, taking in the initial contour (Figure 7a)
but with a very small weight (< 0.01%), fails to follow such distinctive patterns; and has
constrained the contours to a typical A4C shape (Figure 7b). SA-PCA yields a contour
that fits much better to the true border (Figure 7c).
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Fig. 5. Four tracking examples in rows, with 4 snapshots per sequence. The frame numbers are
1, 16, 24, and 32; 1, 12, 67, and 81; 1, 12, 18 and 23; 1, 15, 23, and 30; respectively.

4.4 Double-Contour versus Single Contour

Although harder to train a model (requiring more data), coupled double-contours have
some advantages: A double-contour approach integrates more spatial information, thus
can provide more robust tracking of the two borders. In many cases epicardium is less
visible than endocardium (except for the case of pericardial effusion for which the
opposite is true!), a double-contour can propagate information from the endocardium to
guide the localization of the epicardium (or vice versa). Furthermore, a double-contour
can better preserve topology and reduce the chance of crossing (assuming no crossing in
the training set). With our explicit constraint from the model distribution using Eq. (9),
we limit not only the mode but also the range of shape deformations. Figure 8 shows
an example where the double-contour approach clearly improves the performances by
single contours alone. Notice the complete appearance change on the right, along with
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison of orthogonal projection with our fusion approach in handling large mea-
surement errors. On the same frame we show: (a) the un-constrained flow results; (b) orthogonal
projection into the SA-PCA space; (c) result from our fusion framework; (d) by an expert; (e)
same as (b) but only for endocardial border; (f) same as (c) for endocardial border (also shown are
the uncertainty ellipses). Notice the stronger correction the fusion method brought over the local
measurement errors for both single and double contours.

(a) (b) (c)

Fig. 7. SA-PCA versus incremental PCA. (a) the initial contour; (b) the 14th frame using an
incremental PCA model [18]; (c) the same frame using an SA-PCA model (α = 0.5).
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(a) (b) (c) (d)

Fig. 8. Double versus single contours. (a) the initial contours; (b) 7th frame tracked by the double-
contour; (c) 7th frame with the inner contour; (d) 7th frame with the outer contour.

the large intensity shift at the base, which is in large part to blame for the errors made by
the single contours. The double-contour combines information from all locations plus
a double-contour model to make the decisions for both contours jointly, thus achieving
more robust performance. Our tracker runs at about 30 fps on a 3GHz PC.

5 Related Work

With heteroscedastic measurement noise, an orthogonal projection into the model sub-
space is not only unjustified, but also damaging in terms of information loss [24]. It can
only be justified when the noise is isotropic and homogeneous (cf. [20,7,8,2]).

Measurement uncertainty has been exploited for tracking and motion estimation in
different contexts. However, none has put all relevant information sources into a unified
fusion formulation. Both Brand [24] and Irani [25] use measurement uncertainties, but
they did not provide a complete fusion-based tracking framework that combines all the
information sources. A rank-constrained flow estimation formulation was proposed by
Bregler et al. [26]. They use constraints from both rigid and non-rigid motion represented
by basis-shapes. Although occlusion is addressed, measurement uncertainty in general
is not optimally exploited. Leedan, Matei, and Meer (e.g. [3]) applied heteroscedastic
regression for fitting ellipses and fundamental matrices. The fitting is achieved in the
original space with parameterized models. In our formulation, we avoid the parameteri-
zation of shape variations. Instead, we build subspace probabilistic models through PCA
and obtain closed-form solutions on both the mean and covariance of the fitted data. Al-
though simple, this model proves to be flexible and powerful for the current application,
especially with the use of an SA-PCA model. Nevertheless, for applications where this
model is too restrictive, a future research is to integrate more sophisticated nonlinear
models. (e.g., [27]). Robust model matching [28] relying on M-estimators or RANSAC
has been applied to limit or eliminate the influence of data components that are outliers
with respect to the model. Again, the locally (in space or time) varying uncertainties are
not exploited in these frameworks.
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There is much research work done in medical domain that tracks heart motion using
various techniques (e.g., [8,23,22], etc.). However, none of these addresses the issue of
heteroscedastic noise and its fusion with other information sources.

6 Conclusions and Future Work

This paper presented a joint information fusion framework to track shapes under het-
eroscedastic noise with a strongly adapted subspace model constraint.

Extensions to 3D or 2D+T(time) are natural. Extension to triple(or more)-contours
are feasible if sufficient training data are available. Our framework is general and can
be applied to other applications. Considering the heavy noise situation in the ultrasound
data, success of this approach on other data is expected in our future efforts.
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