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Abstract. In this paper a general method is given for reconstruction of
a set of feature points in an arbitrary dimensional projective space from
their projections into lower dimensional spaces. The method extends the
methods applied in the well-studied problem of reconstruction of a set
of scene points in P3 given their projections in a set of images. In this
case, the bifocal, trifocal and quadrifocal tensors are used to carry out
this computation. It is shown that similar methods will apply in a much
more general context, and hence may be applied to projections from
Pn to Pm, which have been used in the analysis of dynamic scenes.
For sufficiently many generic projections, reconstruction of the scene is
shown to be unique up to projectivity, except in the case of projections
onto one-dimensional image spaces (lines).

1 Introduction

The bifocal tensor (fundamental matrix), trifocal tensor and quadrifocal tensor
have been much studied as a means of reconstucting a 3-dimensional scene from
its projection in two, three or four images. It is well known that given sufficiently
many point (or line) correspondences between the views, it is possible to compute
the multiview tensor and subsequently extract from it the original projection
matrices of the cameras, up to an unavoidable projective equivalence. There have
been too many papers related to this to cite them all, and so we refer here only
to the following papers: [3,2,4]. The methods previously given for extracting the
projection matrices from the bifocal, trifocal and quadrifocal tensor have been
quite different, and it was not clear that a general method exists.

In work involving the analysis of dynamic scenes, Wolf and Shashua ([11])
have considered projections from higher-dimensional projective spaces Pn → P2.
They showed that such problems can also be studied in terms of tensors, and
give some methods for working with these tensors. They do not, however give
a general method for defining these tensors, or extracting the projection ma-
trices afterwards. Neither do they consider projections into higher dimensional
projective spaces.

At the other end of the scale, Quan and others ([7,1]) have studied projections
between low-dimensional spaces, namely projections from P2 to P1, and solve
the reconstruction problem using a trifocal tensor. Quan shows ([6]) that in this
case, there are two possible reconstructions.
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This paper unifies all this previous work by showing that reconstruction from
projections of Pn into arbitrary dimensional projective spaces is always possible,
and is almost always projectively unique. The method involves a generalization
of the multiview tensors for projections P3 → P2 (referred to subsequently as
the “classical” tensors). The exception is the case where all the projections are
onto one-dimensional projective spaces (lines). In this case, two reconstructions
are always possible.

The reconstruction method described in this paper involves Grassmann ten-
sors, which relate Grassmann coordinates1 of linear subspaces in the image. The
concept of Grassmann tensor was introduced by Triggs ([9,10])to unify the clas-
sical bifocal, trifocal and quadrifocal tensors. The same formalism was taken up
by Heyden in a paper exploring the multilinear matching relations ([5]). Triggs
paper does not put any restriction on the dimensions of projective spaces con-
sidered, though he seems mainly to be concerned with the classical projection
P3 → P2, and point correspondences. Nevertheless, in [9] he observes that re-
lations exist involving Grassmann coordinates of higher-dimensional subspaces,
though he does not pursue the subject. In this paper, we consider this topic in
detail, defining a general class of tensors. The main result of this paper, however,
is that from any of these tensors the projection matrices may be retrieved, up
to projective equivalence. This result does not appear in the papers of Triggs or
Heyden.

The Grassmann tensor. We consider a sequence of projections from Pn to
Pmi , for i = 1, . . . , r. Thus, we do not assume that the image space always has
the same dimension. For each i, we select integers αi satisfying 1 ≤ αi ≤ mi

and
∑

i αi = n + 1. These values represent the codimension of linear subspaces
to be specified in each of the image spaces. Thus, when αi = mi, the linear
subspace is a point (dimension 0), and when αi = 1, the linear subspace is a
codimension-1 hyperplane. A set of linear subspaces with these dimensions are
said to correspond when there exists at least one point X in Pn that maps via
each projection to a point in the given linear subspace in the corresponding
image space.

For instance, in the case of the classical trifocal tensor, we say that
x ↔ l′ ↔ l′′ is a point-line-line correspondence if there exists a point X in
P3 that maps to x in the first image, and to points on the lines l′ and l′′ in
the other two images. The corresponding point and lines satisfy a relationship∑

i,j,k xil′j l
′′
kT jk

i = 0 ([3]).
In the general case now being considering, there also exists a tensor relating

the coordinates of a set of corresponding linear subspaces in the set of images.
However, to assign coordinates to linear subspaces of arbitrary dimension, we
need to use Grassmann coordinates (described later). Note that for points and
lines in P2, the Grassmann coordinates are nothing more than the homogeneous
coordinates of the point or line. It is only when we consider image spaces of higher
dimension that the correct generalization in terms of Grassmann coordinates
1 Grassman coordinates, used in this paper, are also called Plücker coordinates by

some authors.
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becomes apparent. In this case, the tensor relates the Grassmann coordinates
of the corresponding linear subspaces in each image. The relationship is of the
form ∑

σ1,σ2,...σr

|S1
σ1

||S2
σ2

| . . . |Sr
σr

|A∼σ1∼σ2...∼σr
= 0 (1)

The notation |Si
σi

| represents the σi-th Grassmann coordinate of the subspace Si.
Recall that Si is a subspace of codimension αi in Pmi . Consequently, the vector
of Grassmann coordinates has dimension Cαi

mi+1, and σi is an index into this
Grassmann vector. The sum is over all combinations of Grassmann coordinates.
The notation ∼ σi is to be read “not” σi. What this means is not made clear
until later, but the reader may safely ignore the ∼, for it is only a notational
convenience (or perhaps inconvenience). In fact A∼σ1∼σ2...∼σr

represents a tensor
indexed by the indices σi.2 We refer to A as a Grassmann tensor.
Computation of the Grassmann tensor. Given a correspondence between sub-
spaces of codimension αi in each Pmi , we obtain a single linear relationship
between the elements of the Grassmann tensor. It is also possible to obtain rela-
tionships involving the tensor in the case of correspondences between subspaces
of greater codimension than αi. In the case of the trifocal tensor, a 3-point cor-
respondence x ↔ x′ ↔ x′′ leads to four linear relations. These are obtained by
choosing any two lines passing through x′ and any two lines passing through
x′′. Each choice of lines leads to a point-line-line correspondence, from each of
which one obtains a linear relation. This same idea allows us to derive linear
relations for Grassmann tensors in higher dimension, given a correspondence
betwen subspaces of higher codimension. The exact number of correspondences
generated in this way is not explored in this paper, though it is well understood
in the P3 → P2 case. In any case, given sufficiently many correspondences the
Grassmann tensor may be computed linearly.

For clarification, it should be pointed out that for a set of projections
Pn → Pmi , there may be many different tensors, depending on the choice of
the sequence of codimensions (αi, α2, . . . , αr). The only restrictions are that
1 ≤ αi ≤ mi and

∑
i αi = n + 1. In the well-known case of the trifocal tensor,

there are actually three different tensors depending on which of the three images
is chosen to have the contravariant index. The three tensors have codimension
sequences (2, 1, 1), (1, 2, 1) and (1, 1, 2) respectively. In the general case, we call
the sequence of codimensions (α1, α2, . . . αr) the profile of the corresponding
tensor. Each such profile corresponds to a different tensor. If we are computing
a tensor from point correspondences across several views, then it is necessary
to choose in advance which profile to use, since any profile consistent with the
dimensions of the image spaces can be used.
Extraction of projection matrices. Having computed a Grassmann tensor from
a set of linear subspace correspondences, we now seek to extract the projection
matrices. Ad-hoc techniques for computing the projections from multiview ten-
sors have been proposed in the past, both for the standard case of P3 → P2 as
2 In some respects the ∼ sign is analogous to the use of upper and lower indices in

the classical tensor notation.
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well as for higher dimensional cases ([11]). We now give a general procedure for
doing this, and show that (at least for generic projections) the projection ma-
trices are determined uniquely by a Grassmann tensor up to projective equiv-
alence, except in the case where each mi = 1. In this latter case, there will
always be two non-equivalent solution, and indeed this represents a basic ambi-
guity for projective reconstruction from projections onto lines. This ambiguity
persists however many point correspondences are involved. The two projective
reconstructions are related to each other by a Cremona transform, which is a
non-linear transformation of Pn ([8]).

The method for computing the projection matrices given the tensor is related
to the way a spanning set of vectors for a linear subspace is computed from the
Grassmann coordinates. However, it is somewhat more involved. We make no
claim that this method is optimum, or even robust in the presence of noise.
In fact we are not concerned with noise at all. The present paper provides an
existence and uniqueness proof for reconstruction rather than attempting to
determine an optimal algorithm. As a deliberate choice, no experimental results
will be reported.

1.1 Definition of the Tensors

A mapping from Pn to Pm is represented by a matrix of dimension (m+1)×(n+
1), acting on homogeneous coordinates. We consider a set of r such mappings,
where the i-th mapping is from Pn to Pmi . Thus the dimension of the image
of this mapping may be different in each case. The matrix representing the i-th
mapping will be denoted by Ai

We introduce the concept of an ordered partition of n + 1. This is an or-
dered tuple of non-negative integers (α1, α2, . . . , αr) that sum to n + 1. We are
interested in those partitions of n for which each αi lies in the range 1 to mi.
We will show that for each such ordered partition, there exists an r-view ten-
sor (where r is the length of the partition) relating the coordinates of matched
codimension-αi linear subspaces in r images.

Thus when n = 3 and each mi = 2, the possible ordered partitions of 4 = 3+1
are (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2) and (1, 1, 1, 1). These partitions correspond
to the well-known multiview tensors for 2, 3 and 4 views. We see that there is
a bi-focal tensor (the fundamental matrix) corresponding to the partition (2, 2),
three trifocal tensors corresponding to the three partitions of length 3, and one
quadrifocal tensor.

We will call the ordered partition corresponding to a given tensor the profile
of the tensor. How the tensor with a given profile is defined will now be explained.

Given d + 1 points spanning a linear subspace of some projective space, we
assemble the points as the columns of a matrix S. The linear subspace is simply
the span of the columns of S and any point in this subspace can be written
in the form Sv for some suitable vector v. We may speak of the matrix S as
representing the subspace. The condition for a point X in Pn to map into the
subspace under a mapping represented by A is that AX − Sv = 0 for some v.
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Now, choose a set of linear subspaces each of codimension αi in its projective
space Pmi and let Si be the matrix representing the subspace. Suppose that there
exists a point X in Pn that maps under each projection (represented by Ai) to
a point lying in the subspace Si. It will be shown that this condition implies a
single constraint on the set of projection matrices Ai.

The fact that this same X projects into each of the subspaces may be written
in one matrix equation as follows.








A1 S1

A2 S2

...
. . .

Ar Sr

















X
−v1
−v2

...
−vr










= 0 . (2)

Note that the matrix on the left is square. To check this: the number of rows
is equal to

∑r
i=1(mi + 1), whereas the number of columns is equal to

(n + 1) +
r∑

i=1

(mi + 1 − αi) =
r∑

i=1

(mi + 1) since
r∑

i=1

αi = (n + 1) .

In order for a non-zero solution to this set of equations to exist, it is necessary
that the determinant of the matrix be zero. If the coordinates of the subspaces
(the matrices Si) are given, then this provides a single constraint on the entries of
the matrices Ai. To understand the form of this constraint, we need to expand out
this determinant, and to do that, we shall need to use Grassmann coordinates.

Grassmann coordinates. Given a matrix M with q rows and p columns, where
p ≤ q, we define its Grassmann coordinates to be the sequence of determinants of
all its p×p submatrices. It is a well known fact that the Grassmann coordinates
of a matrix determine its column span. Alternatively, the Grassmann coordinates
determine the matrix up to right-multiplication by a non-singular p × p matrix
with unit determinant. Let σ represent a sequence of p distinct integers in the
range 1 to q, in ascending order. Let |Mσ| represent the determinant of the matrix
that consists of the rows of M specified by the sequence σ. Then the values |Mσ|, as
σ ranges over all such sequences, are the Grassmann coordinates of the matrix.

Now, given such a sequence σ indexing the rows of a matrix, let ∼ σ represent
the sequence consisting of those integers not in σ. and define sign(σ) to be +1
or −1 depending on whether the concatenated sequence σ ∼ σ is an even or odd
permutation.3 Thus, for example the sequence 125 has sign +1, since 12534 is
an even permutation.

Given a square matrix divided into two blocks, for instance [A|B], its deter-
minant may be expressed in terms of the Grassmann coordinates of A and B. In
particular

|A|B| =
∑

σ

sign(σ)‖Aσ‖ ‖B∼σ‖

3 A permutation is called even or odd, according to whether it is the product of an
even or odd number of pairwise swaps.
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where the sum is over all ascending sequences σ of length equal to the number
of columns of A. The particular case where A consists of a single column is just
the familiar cofactor expansion of the determinant.

Using this factorization, one may derive a precise formula for the determinant
of the matrix on the left of (2), namely

±
∑

σ1,σ2,...,σr

sign(σ1) . . . sign(σr) |A∼σ1∼σ2...∼σr | |S1
σ1

||S2
σ2

| . . . |Sr
σr

| . (3)

In this formula, each σi is an ordered sequence of integers in the range 1 to
mi + 1, the length of the sequence being equal to the dimension of the subspace
Si. Further, |A∼σ1∼σ2...∼σr | is the determinant of the matrix obtained by selecting
the rows indexed by ∼ σi (that is, omitting the rows indexed by σi) from each
Ai. The overall sign (whether + or −) does not concern us. The set of values

A∼σ1∼σ2...∼σr
= sign(σ1) . . . sign(σr) |A∼σ1∼σ2...∼σr |

forms an r dimensional array whose elements are (up to sign) minors of the
matrix A obtained by stacking the projection matrices Ai. The only minors are
ones corresponding to submatrices of A, in which αi rows are chosen from each
Ai. Recalling that the sequence (α1, . . . , αr) in which

∑r
i=1 αi = n+1 is called a

profile, we will call the array A∼σ1∼σ2...∼σr the Grassmann tensor corresponding
to the profile (α1, . . . , αr).

The tensor A gives a linear relationship between the Grassmann coordinates
of linear subspaces defined in each of the image spaces Pmi :

∑

σ1,σ2,...,σr

A∼σ1∼σ2...∼σr
|S1

σ1
||S2

σ2
| . . . |Sr

σr
| = 0 . (4)

This relationship generalizes the classical bifocal and trifocal relations ([3]). The
classical tensors involve relations between point and line coordinates in P2. How-
ever, the Grassmann coordinates of a single point (a 0-dimensional linear space)
are simply the homogeneous coordinates of the point. Similarly, for a line in
P2, the Grassmann coordinates are the same as the homogeneous coordinates,
except for sign.

Given a change of coordinates in some of the image spaces Pmi , the tensor
A does not in general transform strictly as a contravariant or covariant tensor.
Rather, it transforms according to the inverse of the corresponding transforma-
tion of Grassmann coordinates induced by the change of coordinates. This map is
the mi +1−αi-fold exterior product mapping induced by the coordinate change.

2 Solving for the Projection Matrices

We now consider the problem of determining the projection matrices from a
Grassmann tensor. As in the standard case of 3D reconstruction from uncal-
ibrated image measurements, we can not expect to determine the projection
matrices more exactly than up to projectivity. In addition, since the projection
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matrices are homogeneous objects, their overall scale is indeterminate. Thus, we
make the following definition:

Definition 1. Two sequences of projection matrices (A1, . . . , Ar) and (Â
1
. . . , Â

r
)

are projectively equivalent if there exists an invertible matrix H as well as scalars
λi such that Â

i
= λiAiH for all i.

Now, let A be formed by stacking all the Ai on top of each other, resulting
in a matrix of dimension (

∑r
i=1(mi + 1)) × (n + 1). We accordingly associate

the matrices Ai with successive vertically stacked blocks of the matrix A. Corre-
sponding to definition 1, we may define an equivalence relation on matrices with
this block structure, as follows.

Definition 2. Two matrices A and Â made up of blocks Ai and Â
i
of dimension

(mi + 1) × (n + 1) are block projectively equivalent if there exists an invertible
(n+1)×(n+1) matrix H, and scalar matrices λiIi of dimension (mi+1)×(mi+1)
such that

Â = diag(λ1I1, . . . , λrIr)AH .

It is easily seen that this definition is equivalent to the projective equivalence
of the sequences of matrices (A1, . . . , Ar) and (Â

1
. . . , Â

r
) as stated in definition 1.

It is evident that this is an equivalence relation on matrices with this given
block structure.

2.1 Partitions and Determinants

Now, we assume that there are sufficiently many such projections that∑r
i=1 mi ≥ n. Let (α1, . . . , αr) be an ordered partition of (n + 1) with the prop-

erty that 1 ≤ αi ≤ mi. We may form square matrices of dimension (n+1)×(n+1)
by selecting exactly αi rows from each matrix Ai. We may then take the deter-
minant of such a square matrix. Of course, we may select αi rows from each Ai

in many different ways – to be exact, there are
∏r

i=1 Cαi
mi+1 ways of doing this,

and that many such subdeterminants of A corresponding to the given partition.
Before giving the main theorem, we state our assumption of genericity. All

projections from Pn to Pm are assumed to be “generic”, which means in effect
that improbable special cases are ruled out. Any polynomial expression in the
coordinates of the matrix representation of the projections, or related points
may be assumed to be non-zero, unless it is always zero. Thus the results we
prove will hold, except on a set of measure zero. We now state the main theorem
of this part of the paper.

Theorem 1. Let A be a generic matrix with blocks Ai; i = 1, . . . , r of dimension
(mi +1)× (n+1), and let (α1, . . . , αr) be any fixed ordered partition of n+1. If
at least one mi is greater than one, then the matrix A is determined up to block
projective equivalence by the collection of all its minors, chosen with αi rows
from each Ai. If all mi = 1, then there are two equivalence classes of solutions.
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We refer to the partition (α1, . . . , αr) as the profile of the minors. Thus, the
theorem states that the matrix A is determined up to projective equivalence by
its collection of minors with a given fixed profile.

Proof. We would like to give a more leisurely proof, with examples, but are pre-
vented by lack of space. The proof given below is complete, but telegraphic. Let
A and Â be two matrices with corresponding blocks Ai and Â

i
, each of which gives

rise to the same collection of minors. Our goal is to show that the two matrices
are block projective-equivalent, which means that Â

i
= λiAiH for some choice of

H and λi. The strategy of the proof is to apply a sequence of transformations to A
(and to Â), each transformation replacing A by a projectively equivalent matrix,
until eventually A and Â become identical. This will demonstrate the projective
equivalence of the original matrices.

By assumption, there exists at least one non-zero minor, and without loss
of generality (by rearranging rows if required), this may be chosen to belong
to the submatrix of A in which the first αi rows are chosen from each Ai. Let
this submatrix be denoted by G. Choosing H = G−1, we may replace A by an
equivalent matrix AH in which the matrix G is replaced by the identity matrix.
Doing the same thing to Â, we may assume that both A and Â have this simple
form.

After this transformation, the form of the matrix A is somewhat simplified.
The first αi rows from each block are known, consisting of zeros, except for one
unit element in each such row. We refer to these rows of A as the reduced rows.
The elements of the remaining rows of A are still to be determined. We show that
they can be determined (up to block projective equivalence) from other minors
of the matrix.

We consider a finer block decomposition of the matrix A into blocks indexed
by (i, j) where the block Aij has dimension (mi + 1) × αj as shown:






A11 . . . A1r

...
. . .

...
Ar1 . . . Arr




 . (5)

The first αi rows of each such Aij are reduced, so

Aii =
[
I
Bii

]

and Aij =
[
0
Bij

]

for i �= j

The reduced rows of A form an identity matrix, having unit determinant. Let
B be the matrix obtained from A by removing the reduced rows. Then B has
the same type of block structure as A. We investigate the relationship between
minors4 of A and those of B.

Consider a submatrix of A chosen according to a given profile (α1, . . . , αr).
Some of the rows of this submatrix will be rows of B, while other will be chosen
4 For brevity, when we speak of the minors of A, we mean those chosen according to

the given profile, with αi rows from each Ai.
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from among the reduced rows of A. A reduced row is one in which there is one
unit (1) entry and the rest are zero. In computing the determinant, we may
strike out any reduced rows, as well as the columns containing the unit entries,
resulting in a smaller matrix containing only elements belonging to rows from B.
The columns that remain are ones that did not have a 1 in any reduced row of
the chosen submatrix. Here is the key observation: if a row is chosen from the i-th
block of rows [Bi1 . . . Bir] then some reduced row from the same numbered blocks
[Ai1 . . . Air] must be absent. Such a row has its unit element in the block Aii,
but this row is not present in the chosen submatrix. The corresponding column,
belonging to the i-th block of columns, must therefore “survive” when rows and
columns corresponding to the reduced rows are struck out. This means:

The minors of A are in one-to-one correspondence with (and equal up to
sign to) the minors of B chosen in the following manner: βi rows are chosen
from the i-th block of rows of [Bi1 . . . Bir] and βi columns from the i-th block of
columns, containing the blocks B1i . . . Bri. Here the βi are integers in the range
0 ≤ βi ≤ αi.

Such minors of B will be called “symmetrically chosen” minors. The minors
of A and B are equal only up to sign, because of the order of the rows, but the
sign correspondence is well determined, so that if one knows the values of the
minors of A, then the symmetrically chosen minors or B are also known. We will
show that B is determined by its symmetrically chosen minors, and hence by the
minors of A. Therefore, knowing the minors of A, we know B and hence A, up to
projective equivalence. This would complete the proof.

The exact truth is slightly more complicated. We define a different type of
equivalence relation on block matrices of the form B = [Bij ], where i, j = 1, . . . , r.

Definition 3. Two matrices B = [Bij ] and B̂ = [B̂
ij

] will be called bilinearly
equivalent if there exist non-zero scalars λi such that B̂

ij
= λiλ

−1
j Bij.

The truth is that the symmetrically chosen minors of B determine B up to bilinear
equivalence. This is sufficient, however, since if B and B̂ are bilinearly equivalent,
then the corresponding matrices Ai and Â

i
are projectively equivalent, which is

all we need. This is true because

Â
i
= λiA

idiag(λ−1
1 Iα1 , . . . , λ

−1
r Iαr

)

follows from the fact that B̂
ij

= λiλ
−1
j Bij .

The proof of Theorem 1 will be completed therefore by proving the following
lemma.
Lemma 1. A matrix B = [Bij ] is determined up to bilinear equivalence by its
collection of symmetrically chosen minors.

In fact, it will be sufficient only to consider only 3 × 3 minors, or 2 × 2 minors
in the two-view case. The proof will proceed in three steps.
1. The 1 × 1 minors determine the elements of the diagonal blocks Bii.
2. The 2 × 2 minors determine symmetrically opposite pairs of blocks Bij and

Bji up to a pair of inverse scalar multiples.
3. The 3 × 3 minors determine consistent scale factors.
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Step 1 - the 1 × 1 minors. The 1 × 1 symmetrically chosen minors are nothing
other than the elements of the diagonal blocks Bii, and hence these 1× 1 minors
determine the diagonal blocks.

Step 2 - the 2 × 2 minors. A 2 × 2 symmetrically chosen minor will be of the
form [a b; c d], where a and d are from diagonal blocks Bii and Bjj , and hence
are known from the previous step. Elements b and c are from the symmetrically
opposite blocks Bij and Bji. Since the determinant is ad − bc with ad known, we
may obtain the value of bc from the value of the 2× 2 minor. In fact, by chosing
the right minor, we can determine the product of any two elements chosen from
symmetrically opposite blocks such as Bij and Bji.

Let b be the vector consisting of all elements from the block Bij and c be the
vector of elements of Bji. Then the set of all products vrs of elements from blocks
Bij and Bji can determined and written brcs = vrs. This means that the values vrs

form a rank-1 matrix that factors as V = bc�. The factorization is easily carried
out using the Singular Value Decomposition, or some more simple method5.

Solution of the equations brcs = wrs is only possible up to an indeterminate
scale factor. Thus, we may multiply each br by λ and cs by λ−1 with the same
result, but this is the only possible ambiguity. The result of this is that one may
determine the blocks Bij and Bji of the matrix B up to multiplication by inverse
scalar factors.

Let B = [Bij ] and B̂ = [B̂
ij

] be two sets of matrices having the same collection
of symmetrically chosen minors. Our goal is to show that B̂

ij
= λiλ

−1
j Bij for all

i, j. On the other hand, what we have shown so far is that there exist non-zero
constants µij with µii = 1 and µij = µ−1

ji such that B̂
ij

= µijBij . It remains to
show that µij can be written as λiλ

−1
j . At this point, we modify the matrix B

by multiply each block Bij by µ1iµ
−1
1j . This operation transforms B to another

matrix that is bilinearly equivalent to it, and it is sufficient to prove that the
new B thus obtained is equivalent to B̂. Note however that because of this
modification to the matrix B, the first row block and column block of B and B̂

are identical. Thus, in particular B̂
ij

= µijBij , and µi1 = µ1i = 1 for all i.

Step 3 - consistent choice of scale factors λ. The proof will now be completed
by proving that µij = 1 for all i, j.

Consider allowable 3 × 3 subdeterminants of B, in which one row is taken
from the first row block, and one row each from each of two other row
blocks. Corresponding columns are chosen from the corresponding blocks. The
submatrix of B is 


a b c
d e µf
g µ−1h k



 (6)

and the submatrix of B̂ is the same in which µ = 1. Equating the two determi-
nants gives an equation of the form Aµ + B + Cµ−1 = A + B + C for constants
5 The only thing that can go wrong here is that all wij are zero, but this a non-generic

case.
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A, B and C. Multiplying by µ gives a quadratic equation with two solutions:
µ = 1 and µ = C/A. In terms of the entries of the matrix, the second solution
is µ = (dhc)/(bfg). Thus, there are two possible solutions for µ. However, in
most situations we may obtain a second equation for µ which will also have two
solutions, but only the solution µ = 1 will be common to both equations, and
hence a solution to the complete system.

To see this, we need to make an assumption that the first projection matrix
A1 = [A11 . . . Air] has more than two rows – its dimension is m1 +1 ≥ 3. This is
possible without loss of generality provided that there exists at least one projec-
tion matrix with at least three rows, for it may be chosen as the first. The number
of rows chosen from A1 is α1 which is in the range 1 ≤ α1 ≤ m1. Now, suppose
that the rows and columns of (6) are chosen from the row and column blocks
numbered 1, i and j. Thus, the entries of (6) are drawn from the block matrix




B11 B1i B1j

Bi1 Bii Bij

Bj1 Bji Bjj



 . (7)

Now, the dimension of the matrix Bij is (mi + 1 − αi) × αj . Specifically, Bi1

has dimension (mi + 1 − αi) × α1, and B1j has dimension (m1 + 1 − α1) × αj .
However, since 1 ≤ α1 ≤ m1 and m1 > 1, it must follow that either α1 > 1
or m1 + 1 − α1 > 1. Thus, either Bi1 has at least two columns, or B1j has at
least two rows. In either case, there is more than one way of selecting rows and
columns from (7) to obtain a submatrix of the form (6). Each such choice will
give a different equation for µ. The solution µ = 1 will be common to both
equations whereas the second solution µ = (dhc)/(bfg) will be different for the
two cases, since generically the entries of the matrix (6) will be different for the
different choices of rows and columns.

This completes the proof, since we have shown that the only value of µij

that is consistent with the assumed equality of all the allowable minors of B and
B̂ is that µij = 1 for all i, j. Hence, B = B̂.

2.2 Two Solutions in Minimal Case

It was seen that the case where all projection matrices have only two rows is a
special case in which we can not find two equations for each value µij . In such a
case it is possible that there will be two possible solutions for matrices with the
same set of minors. We will investigate this further, and show that in this case,
generically there are indeed two solutions.

Thus, let the projection matrices Ai each have dimension 2 × (n + 1), rep-
resenting a projection from an n-dimensional projective space onto a projective
line. In order for us to form square submatrices by choosing one row from each
such Ai there must be exactly n + 1 such projections. Thus, A has dimension
2(n + 1) × (n + 1) and each αi = 1.

With the same argument as before, we may assume that the first rows of
each of the Ai form an identity matrix of dimension (n + 1) × (n + 1). Deleting
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these rows, we obtain an (n+1)× (n+1) matrix B. In this case, each Bij consists
of a single element. We consider symmetrically chosen submatrices of B. In this
case, the summetrically chosen submatrices are those for which the indices of the
selected rows and columns are the same. Such a submatrix is chosen by selecting
the rows and columns numbered by a sequence of indices (i1, i2, . . . , ir). The key
observation here is that the minors of B and its transpose B� corresponding to
a given sequence of indices are the same, because the determinant of a matrix
and its transform are the same. In other words, it is impossible to distinguish
between the matrix B and its transpose on the basis of such symmetrically chosen
minors.

Referring this back to the original projection matrices we obtain two matrices
A and Â which can not be distinguished by their minors with profile (1, . . . , 1).
We may write a specific example as follows: Let

A1 =
[

1 0 0
a b c

]

; A2 =
[

0 1 0
d e f

]

; A3 =
[

0 0 1
g h j

]

and

Â
1

=
[

1 0 0
a d g

]

; Â
2

=
[

0 1 0
b e h

]

; Â
3

=
[

0 0 1
c f j

]

.

The two matrices A and Â corresponding to these projection matrices can not
be distinguished based on the eight minors formed by choosing one row from
each Ai, or respectively Â

i
. In terms of tensors, this means that the “trifocal

tensors” corresponding to these triples of cameras are the same. Geometrically,
this means that there are two possible reconstructions of a (planar) scene based
on its projection onto three lines in the plane. The 1-dimensional trifocal tensor
was studied by Quan and others in ([7,1]). The observation that there were two
solutions in the case of projections from P2 to P1 was made in [6]. The ambiguity
holds in higher dimensions also, as the above argument shows. Specifically, the
tensor (collection of minors) corresponding to n + 1 projections from Pn onto
a projective line determines the set of projection matrices only up to 2-fold
projective ambiguity. Consequently there are always two reconstructions possible
from the projection of Pn onto (n + 1) projective lines.

Are there generically only two solutions? In the case where each mi = 1, it
may seem possible that there are more than two possibilities (up to bilinear
equivalence) for the matrix B based on its set of minors. However, this is not
possible. If we assume that two matrices B and B̂ have the same set of symmetric
minors, then by carrying through the previous arguments, we find that B may
be replaced by an equivalent matrix for which B and B̂ have the same first row.
In addition, there exist constants µij such that µij = µ−1

ji and Bij = µij B̂
ij

. By
considering 3×3 symmetric minors containing the first row and column as in the
proof of lemma 1 we obtain a single quadratic equation for each of the constants
µij . There are two choices. For each (i, j) we may choose µij = 1, or else we
must choose the other non-unit solution at each position. It may be seen that
once one value µij with i, j > 1 is chosen to equal 1, then they all must be. The
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details are tedious, and omitted. The solution in which µij is taken to be the
non-unit solution for each i, j may be verified to be equivalent (under bilinear
equivalence) to the transposed solution in which B = B̂�.

3 Conclusion

The classical multiview tensor extend to higher dimensions, and allow recon-
struction of the scene from projections in any dimension. The solution is unique
except in the case of projections onto lines. The work of Wolf and Shasha shows
the importance of higher dimensional projections, and provides a potential ap-
plication for this work, at least in proving the feasibility of a solution.

References

1. O. D. Faugeras, L. Quan, and P. Sturm. Self-calibration of a 1D projective camera
and its application to the self-calibration of a 2D projective camera. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(10):1179–1185, October
2000.

2. R. I. Hartley. Computation of the quadrifocal tensor. In Proc. 5th European
Conference on Computer Vision, Freiburg, Germany, LNCS 1406, pages 20–35.
Springer-Verlag, 1998.

3. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

4. A. Heyden. Reduced multilinear constraints: Theory and experiments. Interna-
tional Journal of Computer Vision, 30(1):5–26, 1998.

5. A. Heyden. Tensorial properties of multilinear constraints. Mathematical Methods
in the Applied Sciences, 23:169–202, 2000.

6. L. Quan. Two-way ambiguity in 2d projective reconstruction from three uncali-
brated 1d images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(2):212–216, 2001.

7. L. Quan and T. Kanade. Affine structure from line correspondences with un-
calibrated affine cameras. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(8):834–845, August 1997.

8. J. G. Semple and G. T. Kneebone. Algebraic Projective Geometry. Oxford Uni-
versity Press, 1979.

9. W. Triggs. The geometry of projective reconstruction i: Matching constraints and
the joint image. Unpublished: Available on Bill Triggs’s web-site, 1995.

10. W. Triggs. Matching constraints and the joint image. In E. Grimson, editor,
Proc. 5th International Conference on Computer Vision, Boston, pages 338 – 343,
Cambridge, MA, June 1995.

11. L. Wolf and A. Shashua. On projection matrices Pk → P2, k = 3, . . . , 6, and
their applications in computer vision. International Journal of Computer Vision,
48(1):53–67, 2002.


	Introduction
	Definition of the Tensors

	Solving for the Projection Matrices
	Partitions and Determinants
	Two Solutions in Minimal Case

	Conclusion



