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Abstract. The problem of interactive foreground/background segmentation in
still images is of great practical importance in image editing. The state of the art
in interactive segmentation is probably represented by the graph cut algorithm
of Boykov and Jolly (ICCV 2001). Its underlying model uses both colour and
contrast information, together with a strong prior for region coherence. Estimation
is performed by solving a graph cut problem for which very efficient algorithms
have recently been developed. However the model depends on parameters which
must be set by hand and the aim of this work is for those constants to be learned
from image data.

First, a generative, probabilistic formulation of the model is set out in terms of a
“Gaussian Mixture Markov Random Field” (GMMREF). Secondly, a pseudolike-
lihood algorithm is derived which jointly learns the colour mixture and coherence
parameters for foreground and background respectively. Error rates for GMMRF
segmentation are calculated throughout using a new image database, available on
the web, with ground truth provided by a human segmenter. The graph cut al-
gorithm, using the learned parameters, generates good object-segmentations with
little interaction. However, pseudolikelihood learning proves to be frail, which
limits the complexity of usable models, and hence also the achievable error rate.

1 Introduction

The problem of interactive image segmentation is studied here in the framework used
recently by others in which the aim is to separate, with minimal user interaction,
a foreground object from its background so that, for practical purposes, it is available
for pasting into a new context. Some studies [12]] focus on inference of transparency in
order to deal with mixed pixels and transparent textures such as hair. Other studies [4}
B3] concentrate on capturing the tendency for images of solid objects to be coherent, via
Markov Random Field priors such as the Ising model. In this setting, the segmentation is
“hard” — transparency is disallowed. Foreground estimates under such models can be
obtained in a precise way by graph cut, and this can now be performed very efficiently
[5]]. This has application to extracting the foreground object intact, even in camouflage —
when background and foreground colour distributions overlap atleast in part. We have not
come across studies claiming to deal with transparency and camouflage simultaneously,
and in our experience this is a very difficult combination. This paper therefore addresses
the problem of hard segmentation problem in camouflage, and does not deal with the
transparency issue.
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Fig. 1. Illustrating the GMMRF algorithm for interactive segmentation. The user draws a
fat pen trail enclosing the object boundary (a), marked in blue. This defines the “trimap” with
foreground/background/unclassified labels. The GMMREF algorithm produces (b). Missing parts
of the object can be added efficiently: the user roughly applies a foreground brush (c), marked in
blue, and the GMMRF method adds the whole region (d).

The interactive segmentation problem. The operation of adaptive segmentation by
our model, termed a “Gaussian Mixture Markov Random Field” (GMMREF), is illus-
trated by the following example. The desired object has been cleanly separated from its
background with a modest amount of user interaction (figure [I). Stripping away details
of user interaction, the basic problem input consists of an image and its “trimap” as in
figure [Th). The trimap defines training regions for foreground and background, and the
segmentation algorithm is then applied to the “unclassified” region as shown, in which
all pixels must be classified foreground or background as in fig. [Ib). The classification
procedure needs to apply:
— jointly across those pixels;
— matching the labels of adjoining labelled pixels;
— using models for colour and texture properties of foreground and background pixels
learned from the respective training regions;
— benefiting from any general notions of region coherence that can be encoded in prior
distributions.

2 Generative Models for Interactive Segmentation

This section reviews generative models for two-layer (foreground/background) colour
images in order to arrive at the simplest capable, probabilistic model for interactive
segmentation — the contrast-sensitive GMMRF. A generative, probabilistic model for
image pixel data can be expressed in terms of colour pixel data z, opacity variables c,
opacity prior and data likelihood as follows.

Image. z is an array of colour (RGB) indexed by the (single) index n:
Z=1(21, - y2n,---,2N),

with corresponding hidden variables for transparency & = (v, ..., ay), and hidden
variables for mixture index k = (k1,...,kn). Each pixel is considered, in general,
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to have been generated as an additive combination of a proportion o, (0 < «, < 1)
of foreground colour with a proportion 1 — «,, of background colour [2l1]. Here we
concentrate attention on the hard segmentation problem in which «,, = 0,1 — binary
valued.

Gibbs energy formulation. Now the posterior for « is given by
pla | z) Z pla, k| z) (1

and

p(a, k ‘ Z) = p(Z | «, k)p(a,k). 2

1
p(z)
This can be written as a Gibbs distribution, omitting the normalising constant 1/p(z)
which is anyway constant with respect to a:

1
p(a,k\z)uz—expﬂf with E=L+U+V. 3)
L

The intrinsic energies U and V' encode the prior distributions:
p(a) x exp—U and pk|a) < exp—V 4)

and the extrinsic energy L defines the likelihood term

1
p(z | o, k) (zn|an, k —ex —L. 5
| Hp | 7 oXP— (5)

Simple colour mixture observation likelihood. A simple approach to modelling colour
observations is as follows. At each pixel, foreground colour is considered to be generated
randomly from one of K" Gaussian mixture components with mean (. . .) and covariance
P(...) from the foreground, and likewise for the background:

p(znlan, kn) =N (z; u(kn, ), P(k, ), an=0,1, k, =1,...,K (6)
and the components have prior probabilities

p(k|0é) = Hp(kn|an) with p(kn|an) = ﬂ'(knyoln)- (7

n

The exponential coefficient for each component, referred to here as the “extrinsic energy
coefficient” is denoted S(k, ) = $(P(k,a))~*. The corresponding extrinsic term in

the Gibbs energy is given by
L=> D, (8)

where
D, = [Zn - M(kvu an)]T S(k'rnan) [Zn - ,U(kna O‘n)} . C)]

A useful special case is the isofropic mixture in which S(k,, o) = A(kn, ).
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Note that, for a pixelwise-independent likelihood model as in (6), the partition func-
tion Z, for the likelihood decomposes multiplicatively across sites n. Since also the
partition function Z; for the prior is always independent of «, the MAP estimate of
« can be obtained (3) by minimising & — log Z;, with respect to @ and this can be
achieved exactly, given that «,, is binary valued here, using a “minimum cut” algorithm
[4]] which has recently been developed [3] to achieve good segmentation in interactive
time (around 1 second for a 5002 image).

Simple opacity prior (No spatial interaction). The simplest choice of a joint prior
p(a) is the spatially trivial one, decomposing into a product of marginals

p(e) = [ pla)

with, for example, p(«,,) uniform over «,, € {0,1} (hard opacity) or o,, € [0,1]
(variable transparency). This is well known [3] to give poor results and this will be
quantified in section 5l

Ising Prior. In order to convey a prior on object coherence, p(a) can be spatially
correlated, for example via a first order Gauss-Markov interaction [6]7]] as, for example,
in the Ising prior:

p(a) < exp —U with U =~ Z [, # ], (10)

m,neC

where [¢] denotes the indicator function taking values 0, 1 for a predicate ¢, and where
C is the set of all cliques in the Markov network, assumed to be two-pixel cliques here.
The constant ~y is the Ising parameter, determining the strength of spatial interaction.
The MAP estimate of a can be obtained by minimising with respect to o the Gibbs
energy (3) with L as before, and the Ising U (IQ). This can be achieved exactly, given
that v, is binary valued here, using a “minimum cut” algorithm [4]). In practice [3] the
homogeneous MRF succeeds in enforcing some coherence, as intended, but introduces
“Manhattan” artefacts that point to the need for a more subtle form of prior and/or data
likelihood, and again this is quantified in section[3l

3 Incorporating Contrast Dependence

The Ising prior on opacity, being homogeneous, is a rather blunt instrument, and it is
convincingly argued [3]] that a “prior” that encourages object coherence only where
contrast is low, is far more effective. However, a “prior” that is dependent on data in
this way (dependent on data in that image gradients are computed from intensities z) is
not strictly a prior. Here we encapsulate the spirit of a contrast-sensitive “prior” more
precisely as a gradient dependent likelihood term of the form

f(Vzla, 8,7) (1)

where (3 is a further coherence parameter in a Gauss-Markov process over z.
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It turns out that the contrast term introduces a new technical issue in the data-
likelihood model: long-range interactions are induced that fall outside the Markov frame-
work, and therefore strictly fall outside the scope of graph cut optimisation. The long-
range interaction is manifested in the partition function Z, for the data likelihood. This
is an inconvenient but inescapable consequence of the probabilistic view of the contrast-
sensitive model. While it imperils the graph cut computation of the MAP estimate, and
this will be addressed in due course, correct treatment of the partition function turns out
to be critical for adaptivity. This is because of the well-known role of partition functions
[7] in parameter learning for Gibbs distributions. Note also that recent advances in Dis-
criminative Random Fields [8]] which can often circumvent such issues, turn out not to
be applicable to using the GMMRF model with trimap labelling.

3.1 Gibbs Energy for Contrast-Sensitive GMMRF

A modified Gibbs energy that takes contrast into account is obtained by replacing the
term U in (I0) by

U =7 3 fan £ amlexp =2z 2l (12)

m,neC

which relaxes the tendency to coherence where image contrast is strong. The constant
(3 is supposed to relate to y via observation noise and we set

T — C(Jlzm — 2a|?), with C =4 (13)

B

where (...) denotes expectation over the test image sample, and taking the constant
C = 4 is justified later.

The results of minimising & = L + U™ (neglecting log Z; — see later) gives
considerably improved segmentation performance [3]. In our experience “Manhattan”
artefacts are suppressed by the reduced tendency of segmentation boundaries to follow
Manhattan geodesics, in favour of following lines of high contrast. Results in section
will confirm quantitatively the performance gain.

3.2 Probabilistic Model

In the contrast-sensitive version of the Gibbs energy, the term U™ no longer corresponds
to a prior for ¢, as it did in the homogeneous case (I0). The entire Gibbs energy is now

E:ZDn—l—fy Z [an#am]exp—ﬁﬂzm—anQ. (14)
n m,neC v
Adding a “constant” term
s 2
vy (l—exp—;Hzm—an ) (15)

m,neC
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to & has no effect on the minimum of £ () w.r.t. a, and transforms the problem in a
helpful way as we will see. The addition of (I3) gives & = U + L where U is the earlier
Ising prior (TI0) and now L is given by

Ba,
L= E Dy +7y E [on, = (1 — exp — ~ ”Zm*zn”z)a (16)
n m,neC

with separate texture constants 3y, (31 for foreground and background respectively. This
is a fully generative, probabilistic account of the contrast-sensitive model, cleanly sep-
arating prior and likelihood terms. Transforming £ by the addition of the constant term
(T3) has had several beneficial effects. First it separates the energy into a component
U which is active only at foreground/background region boundaries, and a component
L whose contrast term acts only within region. It is thus clear that the parameter 3
is a textural parameter — and that is why it makes sense to learn separate parameters
8o, 1. Secondly when, for tractability in learning, the Gibbs energy is approximated
by a quadratic energy in the next section €] the transformation is in fact essential for the
resulting data-likelihood MRF to be proper (ie capable of normalisation).

Inference of foreground and background labels from posterior. Given that L is
now dependent on ¢ and z simultaneously, the partition function Z, for the likelihood,
which was a locally factorised function for the simple likelihood model of section[2, now
contains non-local interactions over c. It is no longer strictly correct that the posterior
can be maximised simply by minimising £ = L + U. Neglecting the partition function
Z 1, in this way can be justified, it turns out, by a combination of experiment and theory
— see section[6l

MAP inference of « is therefore done by applying min cut as in to the Gibbs
energy £. For this step we can either marginalise over k, or maximize with respect to k,
the latter being computationally cheaper and tending to produce very similar results in
practice.

4 Learning Parameters

This section addresses the critical issue of how mixture parameters u(k, o), P(k, ) and
7(k, ) can be learned from data simultaneously with coherence parameters {3, }. In the
simple uncoupled model with 3, = 0 for « = 0, 1 mixture parameters can be learned
by conventional methods, but when coherence parameters are switched on, learning of
all parameters is coupled non-trivially.

4.1 Quadratic Approximation

It would appear that the exponential form of L in (I8) is an obstacle to tractability of
parameter learning, and so the question arises whether it is an essential component of
the model. Intuitively it seems well chosen because of the switching behaviour built into
the exponential, that switches the model in and out of its “‘coherent” mode. Nonetheless,
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in the interests of tractability we use a quadratic approximation, solely for the parameter
learning procedure. The approximated form of the extrinsic energy (16]) becomes:

L*=> "D+ Y Baylom = om]llzm — 2zl (17)

m,neC

and the approximation is good provided 3, ||2m — 2n||? < 7.

Learning . Note that since the labelled data consists typically of separate sets of fore-
ground and background pixels respectively (fig[[h,b) there is no training data containing
the boundary between foreground and background. There is therefore no data over which
the Ising term (T0) can be observed, since v no longer appears in the approximated L*.
Therefore « cannot simply be learned from training data in this version of the interactive
segmentation problem. However for the switching of the exponential term in to act
correctly it is clear that we must have

n

exp—% Zm — 2?1 (18)

throughout regions of homogeneous texture so, over background for instance, we must
have v > B4, ||2m — 2a||%, which is also the condition for good quadratic approximation
above. Given that the statistics of z,, — z, are found to be consistently Gaussian in
practice, this is secured by (I3).

4.2 Pseudolikelihood

A well established technique for parameter estimation in formally intractable MRFs like
this one is to introduce a “pseudolikelihood function” [6] and maximise it with respect
to its parameters. The pseudolikelihood function has the form

P =exp—E* (19)

where £* will be called the “pseudo-energy”, and note that P is free of any partition
function. There is no claim that P itself approximates the true likelihood, but that, under
certain circumstances, its maximum coincides asymptotically with that of the likelihood
[7] — asymptotically, that is, as the size of the data z tends to infinity. Strictly the results
apply for integer-valued MRFs, so formally we should consider z to be integer-valued,
and after all it does represent a set of quantised colour values.

Following [7], the pseudo-energy is defined to be

EF = Z (—logp(zn | Zn, o, k)) (20)

n

where z,, = z\{z, } — the entire data array omitting z,. Now
p(zn | Zn Ot,k) = p(zn | {Zma m e Bn}7 a,k) (21)

by the Markov property, where 13,, is the “Markov blanket” at grid point n — the set of
its neighbours in the Markov model. For the earlier example of a first-order MRF, B,,



Interactive Image Segmentation Using an Adaptive GMMRF Model 435

simply contains the N, S, E, W neighbours of n. Taking into account the earlier details
of the probability distribution over the Markov structure, it is straightforward to be show
that, over the training set

Dot Y Vim (22)

meB,

p(zn | {zm, m € B,}, a,k) x exp —

where
‘/n’m = ﬂan [am = an]”Z’n - Z7n||2- (23)

Terms [, # ] from U have been omitted since they do not occur in the training
sets of the type used here (fig [[), as mentioned before. Finally, the pseudo-likelihood
energy function

£ => & with £ =2, +Dn+ Y Vam (24)

meB,

and exp —Z is the (local) partition function.

4.3 Parameter Estimation by Autoregression over the Pseudolikelihood

It is well known that the parameters of a Gaussian MRF can be obtained from pseu-
dolikelihood as an auto-regression estimate [9]. For tractability, we split the estimation
problem up into 2K problems, one for each foreground and background mixture com-
ponent, treated independently except for sharing common constants 3y and ;. For this
purpose, the mixture index k,, at each pixel is determined simply by maximisation of
the local likelihood:

k, = arg mliixp(zn|an, k)mpm. (25)

Further, for tractability, we restrict the data {z, } to those pixels (much the majority in
practice) whose foreground/background label o agrees with all its neighbours — ie the
n for which

oy, = oy, for allm € B,,.

Observables z,, with a given class label «,, and component index k,, are then dealt with
together, in accordance with the pseudolikelihood model above, as variables from the
regression

2n —Z | Zn ~ N(A(z), — 2), P) (26)
where 1
Tn= 35 D Zms 27)
meB,

and M = |B,,|. The mean colour is estimated simply as
zZ=(z) (28)

where (. . .) denotes the sample mean over pixels from class o and with component index
k. We can solve for A and P using standard linear regression as follows:

A={z-@-2") (@-2)@=-2T)" (29)
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and
P = <eeT> wheree =z —z — A(x — 2). (30)

Lastly, model parameters for each colour component, for instance of the background,
should be obtained to satisfy

MBI =P 1A 31
S(kn, an) = P~H = M, (32)
p(kn, an) =%, (33)

and similarly for the foreground.

Note there are some technical problems here. First is that (31)) represents a constraint
that is not necessarily satisfied by P and A, and so the regression needs to be solved
under this constraint. Second is that in (32) S(k.,, c,,) should be positive definite but this
constraint will not automatically be obeyed by the solution of the autoregression. Thirdly
that one value of 3y needs to satisfy the set of equations above for all background com-
ponents. The first problem is dealt with by restricting S to be isotropic so that P and A
must also be isotropic and the entire set of equations are solved straightforwardly under
isotropy constraints. (In other words, each colour component is regressed independently
of the others.) It turns out that this also solves the second problem. An unconstrained
autoregression on typical natural image data, with general symmetric matrices for the
S(kn, o), will, in our experience, often lead to a non-positive definite solution for
S(kn, o) and this is unusable in the model. Curiously this problem with pseudolikeli-
hood and autoregeression seems not to be generally acknowledged in standard texts [[7}
O]. Empirically however we have found that the problem ceases with isotropic S (ky,, &y, ),
and so we have used this throughout our experiments. The use of isotropic components
seems not to have much effect on quality provided that, of course, a larger number of
mixture components must be used than for equivalent performance with general sym-
metric component-matrices. Lastly, the tying of 5y across components can be achieved
simply by averaging post-hoc, or by applying the tying constraint explicitly as part of
the regression which is, it turns out, quite tractable (details omitted).

5 Results

Testing of the GMMRF segmentation algorithms uses a database of 50 images. We
compare the performance of: i) Gaussian colour models, with no spatial interaction; ii) the
simple Ising model; iii) the full contrast-sensitive GMMRF model with fixed interaction
parameter ; iv) the full GMMRF with learned parameters. Results are obtained using
4-connectivity, and isotropic Gaussian mixtures with ' = 30 components as the data
potentials D,,.

Test Database. The database contains 15 training and 35 test images, available on-
lind!]. The database contrasts with the form of ground truth supplied with the Berkeley

! http://www.research.microsoft.com/vision/cambridge/segmentation/
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) © )

Fig. 2. (a,d) Two images from the test database. (b,e) User defined trimap with foreground (white),
background (black) and unclassified (grey). (c,f) Expert trimap which classifies pixels into fore-
ground (white), background (black) and unknown (grey); unknown here refers to pixels too close
to the object boundary for the expert to classify, including mixed pixels.

databasd] which is designed to test exhaustive, for bottom up segmentation [[10]. Each
image in our database contains a foreground object in a natural background environment
(see fig. B). Since the purpose of the dataset is to evaluate various algorithms for hard
image segmentation, objects with no or little transparency are used. Consequently, partly
transparent objects like trees, hair or glass are not included. Two kinds of labeled trimaps
are assigned to each image. The first is the user trimap as in fig. 2(b,e). The second is
an “expert trimap” obtained from painstaking tracing of object outlines with a fine pen
(fig. 2lc.,f)). The fine pen-trail covers possibly mixed pixels on the object boundary.
These pixels are excluded from the error rate measures reported below, since there is no
definitive ground truth as to whether they are foreground or background.

Evaluation. Segmentation error rate is defined as

no. misclassified pixels
€= . - . —, (34)
no. pixels in unclassified region

where “misclassified pixels” excludes those from the unclassified region of the expert
trimap. This simple measurement is sufficient for a basic evaluation of segemntation
performance. It might be desirable at some later date to devise a second measure that
quantifies the degree of user effort that would be required to correct errors, for example
by penalising scattered error pixels.

2 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Fig. 3. The error rate on the training set of 15 images, using different values for . The minimum
error is achieved for v = 25. The GMMRF model uses isotropic Gaussians and 4-connectivity.

Segmentation model Error rate
GMMREF; discriminatively learned v = 20 (K = 10 full Gaussian) 7.9%
Learned GMMREF parameters (K = 30 isotropic Gauss.) 8.6%
GMMREF; discriminatively learned v = 25 (K = 30 isotropic Gaussian)| 9.4%
Strong interaction model (v = 1000; K = 30 isotropic Gaussian) 11.0%
Ising model (v = 25; K = 30 isotropic Gaussian) 11.2%
Simple mixture model — no interaction () = 30 isotropic Gaussian) 16.3%

Fig. 4. Error rates on the test data set for different models and parameter determination regimes.
For isotropic Gaussians, the full GMMRF model with learned parameters outperforms both the
full model with discriminatively learned parameters, and simpler alternative models. However,
exploiting a full Gaussian mixture model improves results further.

Test database scores. In order to compare the GMMRF method with alternative meth-
ods, a fixed value of the Ising parameter ~y is learned discriminatively by optimising
performance over the training set (fig.[3), giving a value of v = 25. Then the accompa-
nying (3 constant is fixed as in (I3)). For full Gaussians and 8-connectivity the learned
value was v = 20. The performance on the test set is summarized in figure [4 for the
various different models and learning procedures. Results for the two images of figure
Dlfrom the test database, are shown in figure 5] As might be expected, models with very
strong spatial interaction, simple Ising interaction, or without any spatial interaction at
all, all perform poorly. The model with no spatial interaction has a tendency to generate
many isolated, segmented regions (see fig. B). A strong interaction model (v = 1000)
has the effect of shrinking the the object with respect to the true segmentation. The Ising
model, with v = 25 set by hand, gives slightly better results, but introduces ‘“Manhattan”
artefacts — the border of the segmentation often fails to correspond to image edges. The
inferiority of the Ising model and the “no interaction model” has been demonstrated
previously [3] but here is quantified for the first time.

In contrast, the GMMRF model with learned + is clearly superior. For isotropic
Gaussians and 4-connectivity the GMMRF model with parameters learned by the new
pseudolikelihood algorithm leads to slightly better results than using the discriminatively
learned ~.

The lowest error rate, however, was achieved using full covariance Gaussians in the
GMMREF with discriminatively learned . We were unable to compare with pseudolike-
lihood learning; the potential instability of pseudolikelihood learning (section[4) turns
out to be an overwhelming obstacle when using full covariance Gaussians.
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GMMREF; v = 20; full Gauss. GMMREF; + learned GMMREF; v = 25
error = 1.5% error = 4.5% error = 4.7%

Ising model; v = 25 Strong interaction; v = 1000 No interaction
error = 5.9% error = 7.6% error = 8.9%

GMMREF; v = 20; full Gauss. GMMREF; + learned GMMREF; v = 25
error = 6.8% error = 7.0% error = 9.7%

Ising model; v = 25 Strong interaction; v = 1000 No interaction
error = 10.7% error = 15.9% error = 20.0%

Fig. 5. Results for various segmentation algorithms (see fig. d) for the two images shown in fig.
For both examples, the error rate increases from top left to bottom right. GMMRF with pseu-
dolikelihood learning outperforms the GMMRF with discriminatively learned « parameters, and
the various simpler alternative models. The best result is achieved however using full covariance
Gaussians and discriminatively learned .
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6 Discussion

We have formalised the energy minimization model of Boykov and Jolly [3] for fore-
ground/background segmentation as a probabilistic GMMRF and developed a pseudo-
likelihood algorithm for parameter learning. A labelled database has been constructed for
this task and evaluations have corroborated and quantified the value of spatial interaction
models — the Ising prior and the contrast-sensitive GMMREF. Further, evaluation has
shown that parameter learning for the GMMREF by pseudolikelihood is effective. Indeed,
it is a little more effective than simple discriminative learning for a comparable model
(isotropic GMMREF); but the frailty of pseudolikelihood learning limits the complexity
of model that can be used (eg full covariance GMMREF is impractical) and that in turn
limits achievable performance. A number of issues remain for discussion, as follows.

DRF. The Discriminative Random Field model [8] has recently been shown to be very
effective for image classification tasks. It has the great virtue of banishing the issues
concerning the likelihood partition function Z, that affect the GMMREFE. However it can
be shown that the DRF formulation cannot be used with the form of GMMREF developed
here, and trimap labelled data, because the parameter learning algorithm breaks down
(details omitted for lack of space).

Line process. The contrast-sensitive GMMRF has some similarity to the well known
line process model [[11]. In fact it has an important additional feature, that the observation
model is a non-trivial MRF with spatial interaction (the contrast term), and this is a crucial
ingredient in the success of contrast-sensitive GMMRF segmentation.

Likelihood partition function. As mentioned in section[3.2] the partition function 7,
depends on « and this dependency should be taken into account when searching the
MAP estimate of . However, for the quadratically approximated extrinsic energy (LZ),
this partition function is proportional to the determinant of a sparse precision matrix,
which can be numerically computed for given parameters and . Within the range of
values used in practice for the different parameters, we found experimentally that

log Z1, (o) = const + K Z [on # ], (35)

m,neC

with k varying within a range (0, 0.5). Hence, by ignoring log Z, in the global energy
to be minimised, we assume implicitly that the prior is effectively Ising with slightly
weaker interaction parameter v — x. Since we have seen that graph cut is relatively
insensitive (fig. B)) to perturbations in -, this justifies neglect of the extrinsic partition fn
Z 1, and the application of graph cut to the Gibbs energy alone.

Adding parameters to the MRF. It might seem that segmentation performance could
be improved further by allowing more general MRF models. They would have greater
numbers of parameters, more than could reasonably be set by hand, and this ought
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to press home the advantage of the new parameter learning capability. We have run
preliminary experiments with 1) spatially anisotropic clique potentials, ii) larger neigh-
bourhoods (8-connected) and iii) independent, unpooled foreground and background
texture parameters [y and (31 (using min cut over a directed graph). However, in all
cases error rates were substantially worsened. A detailed analysis of these issues is part
of future research.
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P. Anandan, C.M. Bishop, B. Frey, T. Werner, A.L. Yuille and A. Zisserman.

References

10.

11.

Chuang, Y.Y., Curless, B., Salesin, D., Szeliski, R.: A Bayesian approach to digital matting.
In: Proc. Conf. Computer Vision and Pattern Recognition. (2001) CD-ROM

Ruzon, M., Tomasi, C.: Alpha estimation in natural images. In: Proc. Conf. Computer Vision
and Pattern Recognition. (2000) 18-25

Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation
of objects in N-D images. In: Proc. Int. Conf. on Computer Vision. (2001) CD—-ROM
Greig, D., Porteous, B., Seheult, A.: Exact MAP estimation for binary images. J. Royal
Statistical Society 51 (1989) 271-279

Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE
Trans. on Pattern Analysis and Machine Intelligence in press (2003)

Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. Lond. B. 48 (1986)
259-302

Winkler, G.: Image analysis, random fields and dynamic Monte Carlo methods. Springer
(1995)

Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework for contex-
tual interaction in classification. In: Proc. Int. Conf. on Computer Vision. (2003) CD-ROM
Descombes, X., Sigelle, M., Preteux, F.: GMRF parameter estimation in a non-stationary
framework by a renormalization technique. IEEE Trans. Image Processing 8 (1999) 490-503
Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation.
Int. J. Computer Vision 43 (2001) 7-27

Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6 (1984) 721-741



	Introduction
	Generative Models for Interactive Segmentation
	Incorporating Contrast Dependence
	Gibbs Energy for Contrast-Sensitive GMMRF
	Probabilistic Model

	Learning Parameters
	Quadratic Approximation
	Pseudolikelihood
	Parameter Estimation by Autoregression over the Pseudolikelihood

	Results
	Discussion



