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Abstract. Photometric stereo algorithms use a Lambertian reflectance
model with a varying albedo field and involve the appearances of only
one object. This paper extends photometric stereo algorithms to handle
all the appearances of all the objects in a class, in particular the class of
human faces. Similarity among all facial appearances motivates a rank
constraint on the albedos and surface normals in the class. This leads
to a factorization of an observation matrix that consists of exemplar im-
ages of different objects under different illuminations, which is beyond
what can be analyzed using bilinear analysis. Bilinear analysis requires
exemplar images of different objects under same illuminations. To fully
recover the class-specific albedos and surface normals, integrability and
face symmetry constraints are employed. The proposed linear algorithm
takes into account the effects of the varying albedo field by approxi-
mating the integrability terms using only the surface normals. As an
application, face recognition under illumination variation is presented.
The rank constraint enables an algorithm to separate the illumination
source from the observed appearance and keep the illuminant-invariant
information that is appropriate for recognition. Good recognition results
have been obtained using the PIE dataset.

1 Introduction

Recovery of albedos and surface normals has been studied in the computer vision
community for a long time. Usually a Lambertian reflectance model, ignoring
both attached and cast shadows, is employed. Early works from the shape from
shading (SFS) literature assume a constant albedo field: this assumption is not
valid for many real objects and thus limits the practical applicability of the SF'S
algorithms. Early photometric stereo approaches require knowledge of lighting
conditions, but full control of the lighting sources is also constraining. Recent
research efforts [I2[4BEIG[7)8] attempt to go beyond these restrictions by (i) us-
ing a varying albedo field, a more accurate model of the real world, and (ii)
assuming no prior knowledge or requiring no control of the lighting sources. As
a consequence, the complexity of the problem has also increased significantly.
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If we fix the imaging geometry and only move the lighting source to illumi-
nate one object, the observed images (ignoring the cast and attached shadows)
lie in a subspace completely determined by three images illuminated by three
independent lighting sources [4]. If an ambient component is added [6], this
subspace becomes 4-D. If attached shadows are considered as in [1l2], the sub-
space dimension grows to infinity but most of its energy is packed in a limited
number of harmonic components, thereby leading to a low-dimensional subspace
approximation. However, all the photometric-stereo-type approaches (except [A])
commonly restrict themselves to using object-specific samples and cannot han-
dle the appearances not belonging to the object. In this paper, we extend the
photometric stereo algorithms to handle all the appearances of all the objects in
a class, in particular the human face class.

To this end, we impose a rank constraint (i.e. a linear generalization) on the
albedos and surface normals of all human faces. This rank constraint enables us
to accomplish a factorization of the observation matrix that decomposes a class-
specific ensemble into a product of two matrices: one encoding the albedos and
surfaces normals for a class of objects and the other encoding blending linear co-
efficients and lighting conditions. A class-specific ensemble consists of exemplar
images of different objects under different illuminations, which can not be ana-
lyzed using bilinear analysis [14]. Bilinear analysis requires exemplar images of
different objects under the same illuminations. Because a factorization is always
up to an invertible matrix, a full recovery of the albedos and surface normals
is not a trivial task and requires additional constraints. The surface integra-
bility constraint [QT0] has been used in several approaches [6]] to successfully
perform the recovery task. The symmetry constraint has also been employed in
[ITT] for face images. In Section B} we present an approach which fuses these
constraints to recover the albedos and surface normals for the face class, even
in the presence of shadows. More importantly, this approach takes into account
the effects of the varying albedo field by approximating the integrability terms
using only the surface normals instead of the product of the albedos and the
surface normals. Due to the nonlinearity embedded in the integrability terms,
regular algorithms such as steepest descent are inefficient. We derive a linearized
algorithm to find the solution.

In addition, the blending linear coefficients offer an illuminant-invariant iden-
tity signature, which is appropriate for face recognition under illumination vari-
ation. In Section [l we first present a method for computing such coefficients
and then report face recognition results using the PIE database [12].

1.1 Notations

In general, we denote a scalar by a, a vector by a, and a matrix with r rows and
¢ columns by A,.«.. The matrix transpose is denoted by AT7 the pseudo-inverse
by AT, The matrix Ly-norm is denoted by |||

The following notations are introduced for the sake of notational conciseness
and emphasis of special structure.
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— Concatenation notations: = and |}.
= and |} mean horizontal and vertical concatenations, respectively. For ex-
ample, we can represent a nx 1 vector a, x1 by a = [a1, ag, ..., an]T =7 a4
and its transpose by al = [ay,ag, ...,an] = [=", a;]. We can use = and
| to concatenate matrices to form a new matrix. For instance, given a col-
lection of matrices {A1,Aq,...,A,} of size r X ¢, we construct a r X cn
matri] =, A = [A1,Ag,...,A,] and a rn X ¢ matrix [, A =
[Arlr, Arzr, ce AE]T. In addition, we can combine = and |} to achieve a con-
cise notation. Rather than representing a matrix A, «. as [aij], we represent
it as Arxe = [Uioy [=521 ai] | = =521 V21 aiz] |- Also we can easily
construct ‘big’ matrices using ‘small’ matrices {A11,A12,. .., A1y A}
of size 7 x c¢. The matrix [J%; [=]_; A;j] ] is of size rm x cn, the matrix
(=1 [=7=1 Aij] | of size r x cmn.

— Kronecker (tensor) product: ®.
It is defined as Ayxn @ Brxe = 172 [:>?:1 @i B| Jmrxne-

2 Setting and Constraints

We assume a Lambertian imaging model with a varying albedo field and no
shadows. A pixel h is represented as

h=p nis = th7 (1)

where p is the albedo at the pixel, n = [a, 13, é]T is the unit surface normal vector
at the pixel, t3x1 = [a = pa, b = pI;, c= pé]T is the product of albedo and surface
normal, and s specifies a distant illuminant (a 3 x 1 unit vector multiplied by
the light’s intensity).

For an image h, a collection of d pixels {h;,i =1,...,d} E, by stacking all the

pixels into a column vector h, we have
haxt = [Us hi] = [Ui tF]s = Taxa ssx1, (2)

where T = [|}; t;r] contains all albedo and surface normal information about the
object. We call the T matrix the object-specific albedo-shape matrix.

In the case of photometric stereo, we have n images of the same object,
say {hy,ha,... h,}, observed at a fixed pose illuminated by n different lighting
sources, forming an object-specific ensemble. Simple algebraic manipulation gives:

Hixn = [=i hi] = T[= si] = Taxs Ssxn, (3)

1 'We do not need the size of {A1,A2,...,An} to be exactly same. We use matrices
of the same size in this example for simplicity. For example, for [=i; A;], we only
need the number of rows of these matrices to be same.

2 The index 4 corresponds to a spatial position x = (z,y). If no confusion, we will
interchange both notations. For instance, we might also use x = 1, ..., d.
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where H is the observation matriz and S = [=; s;] encodes the information about
the illuminants. Hence photometric stereo is rank-3 constrained. Therefore, given
at least three exemplar images for one object under three different independent
illuminations, we can determine the identity of a new probe image by checking if
it lies in the linear span of the three exemplar images [4]. This requires obtaining
at least three images for each object in the gallery set, which may not be possible
in many applications. Note that in this recognition setting, there is no need for
the training set that is defined below; in other words, the training set is equivalent
to the gallery set.

We follow [13] in defining a typical recognition protocol for face recogni-
tion algorithms. Three sets are needed: Gallery, probe, and training sets. The
gallery set consists of images with known identities. The probe set consists of
images whose identities are to be determined by matching with the gallery set. In
addition, the training set is provided for the recognition algorithm to learn char-
acteristic features of the face images. In general, we assume no identity overlap
between the gallery set and the training set and often store only one exemplar
image for each object in the gallery set. However, the training set can have more
than one image for each object. In order to generalize from the training set to the
gallery and probe sets, we note that all images in the training, gallery, and probe
sets belong to the same face class, which naturally leads to a rank constraint.

2.1 The Rank Constraint

We impose the rank constraint on the T matrix by assuming that any T matrix
is a linear combination of some basis matrices {T1, Ta,..., T, }, i.e., there exist
coefficients {f;; j =1,...,m} such that

Taxs = fiTy = [55 T(E®15) = Wassm (fux1 @ 1), (4)

j=1

where f = [}, f;], W = [=, T;], and |,, denotes an identity matrix of dimension
n X n. Since the W matrix encodes all albedos and surface normals for a class of
objects, we call it a class-specific albedo-shape matrix. Similar rank constraints
are widely found in the literature; see for example [20[21].

Substitution of (@) into (@) yields

hix1 = Ts=W({®I3)s = W(f®s) = Waxsm Ksmxi, (5)

where k = f ® s. This leads to a two-factor bilinear analysis [14]. Recently, a
multilinear analysis has been proposed in [20122].

With the availability of n images {hy,hs,..., h,} for different objects, ob-
served at a fixed pose illuminated by n different lighting sources, forming a
class-specific ensemble, we have

Hixn = [=i hi] = W= (fi ®5:)] = W[= ki] = Waxsm Kamxn, (6)

where K = [=; (f; ®s;)] = [= k. It is a rank-3m problem. Notice that K takes
a special form.
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The rank constraint generalizes many approaches in the literature and is
quite easily satisfied. If m = 1, this reduces to the case of photometric stereo; if
the surface normal is fixed and the albedo field lies in a rank-m linear subspace,
we have (@) satisfied too. Interestingly, the ‘Eigenface’ approach is just a
special case of our approach, but this is only for a fixed illumination source.
Suppose that the illuminant vector is §. (@) and (6) reduce to equations:

hax1 = WE®38) = Wasmfmx1; Haxn = [=i hi] = W= fi] = WasmFmxn, (7)

where W = [=; T;5]. Therefore, our approach can be regarded as a generalized
‘Eigenface’ analysis able to handle illumination variation.

Our immediate goal is to estimate W and K from the observation matrix
H. The first step is to invoke an SVD factorization, say H = U/lVT7 and retain
the top 3m components as H = UgmAnggm:\iV R, where W = Us,, and K =
Agmv;fm. Thus, we can recover W and K up to a 3m x 3m invertible matrix R
with W = WR, K = R™'K. Additional constraints are required to determine the
R matrix. We use the integrability and symmetry constraints, both related to
W. Moreover, K = [=; (f; ® s;)].

2.2 The Integrability Constraint

One common constraint used in SEFS research is the integrability of the sur-
face [AT0MS]. Suppose that the surface function is z = zx) with x = (z,y),

we must have %g—; = %g—;. If given the unit surface normal vector nxy =
. A . . bex ax :
[aexy, b c(x)]T at pixel x, we have %ézxi = 6% éEX;' In other words, with ax)

defined as an integrability constraint term,

Dby 5 By | e D
ax) = C(x) O —b(x) O + ax) By — Cx) By =0. (8)

If instead are given the product of albedo and surface normal txy =

[aix) bx)s ool T With a) = peode) b = Pexbes and ex) = poéex), B)
still holds with a, B, and ¢ replaced by a, b, and ¢, respectively. Practical algo-
rithms approximate the partial derivatives by forward or backward differences
or other differences that use an inherent smoothness assumption. Hence, the
approximations based on t(xy are very rough especially at places where abrupt
albedo variation exists (e.g. the boundaries of eyes, iris, eyebrow, etc) since the
smoothness assumption is seriously violated. We should by all means use n, in
order to remove this effect.

2.3 The Symmetry Constraint

For a face image in a frontal view, one natural constraint is its symmetry about
the central y-axis as proposed in [7ITT]:

Ploy) = P(—a,y)i O(z,y) = —Q(—a,y9)i O(w,y) = b(—a,9)i Cay) = C(—apy)r  (9)
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which is equivalent to, using x = (x,y) and its symmetric point X = (—x,y),

ax) = —aex); b = by cx) = ¢(x)- (10)

If a face image is in a non-frontal view, such a symmetry still exists but the
coordinate system should be modified to take into account the view change.

3 The Recovery of Albedos and Surface Normals

The recovery task is to find from the observation matrix H the class-specific
albedo-shape matrix W (or equivalently R), which satisfies both the integrability
and symmetry constraints, as well as the matrices F and S. Denote R = [:S;»”:l

[faj,fbjﬂcjﬂ and W = [Ux 1 W(x)} As W = [U§i<:1 [=>§n:1 [aj(x)vbj(x),cj(x)m =
WR, we have

~T AT ~ T .
ajx) = Wix)fas> bjx) = Wix)Mbjs Cix) = WixyFejs J=1,...,m. (11)

Practical systems must take into account attached and cast shadows as well as
sensor noise. The existence of shadows in principle increases the rank to infinity.
But, if we exclude shadowed pixels or set them as missing values, we still have
rank 3. Performing a SVD with missing values is discussed in [3/16].

In view of the above circumstances, we formulate the following optimization
problem: minimizing over R, F, and S the cost function £ defined as

d

SN 1) iy — WO TR(E ©5:))

i=1 X=1

m d
+%ZZ{%(X>} +*ZZ{@<X>} )

j=1Xx=1 j=1X=1

=& (R,F,S) + A& (R) + A& (R), (12)

3

E(R,F,S) =

N}M—\

where i;(x) is an indicator function describing whether the pixel x of the image
h; is in shadow, (x) is the integrability constraint term based only on surface
normals as defined in (8), and ;x) is the symmetry constraint term given as

B0 = {aj00 +aj ¥ +{bjoo — b} +{ejon — et G =1,...,m. (13)

One approach could be to directly minimize the cost function over W, F, and S.
This is in principle possible but numerically difficult as the number of unknowns
depends on the image size, which can be quite large in practice.

As shown in [I7], the surface normals can be recovered up to a generalized
bas-relief (GBR) ambiguity. To resolve the GBR ambiguity, we normalize the
matrix R by keeping ||R||2 = 1. Another ambiguity between f; and s; is a nonzero

scale, which can be removed by normalizing f: f;rl = 1, where 1,,«1 is a vector
of 1’s.
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To summarize, we perform the following task:
ming gs E(R,F,S) subject to [|R]|2 = 1, FT1=1. (14)

An iterative algorithm can be designed to solve ([I4]). While solving for F and
S with R fixed is quite easy, solving for R given F and S is very difficult be-
cause the integrability constraint terms require partial derivatives of the surface
normals that are nonlinear in R. Regular algorithms such as steepest descent
are inefficient. One main contribution in this paper is that we propose a lin-
earized algorithm to solve for R. Appendix-I presents the details of the complete
algorithm.

To demonstrate how the algorithm works, we design the following scenario
with m = 2 so that the rank of interest is 2x3=6. To defeat the photometric
stereo algorithm, which requires one object illuminated by at least three sources,
and the bilinear analysis which requires two fixed objects illuminated by at least
the same three lighting sources, we synthesize eight images by taking random
linear combinations of two basis objects illuminated by eight different lighting
sources. Fig. [1] displays the synthesized images and the recovered class-specific
albedo-shape matrix, which clearly shows the two basis objects. Our algorithm
converges within 100 iterations.

One notes that the special case m = 1 of our algorithm can be readily ap-
plied to photometric stereo (with the symmetry constraint removed) to robustly
recover the albedos and surface normals for one object.

Fig. 1. Row 1: Eight Synthesized images that are random linear combinations of two
basis objects illuminated by eight different lighting sources. Row 2: Recovered class-
specific albedo-shape matrix showing the two basis objects (i.e. the three columns of
T1 and Tg).

4 Recognition Experiments

We study an extreme recognition setting with the following features: there is no
identity overlap between the training set and the gallery and probe sets; only
one image for one object is stored in the gallery set; the lighting conditions for
the training, gallery and probe sets are completely unknown. The only known
fact is that the face is in frontal view. Our strategy is to: (i) Learn W from the
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training set using the recovery algorithm described in Section B} (ii) With W
given, learn the identity signature f’s for both the gallery and probe sets using
the recovery algorithm described in Section fI]and no knowledge of illumination
directions; and (iii) Perform recognition using the nearest correlation coefficient.
Suppose that one gallery image g has its signature f, and one probe image p has
its signature f,, their correlation coefficient is cc(p, g) = (fp,fg)/\/(fp, fp) (fg, f

where (x,y) is an inner-product such as (x,y) = xTZy with X' learned or given.

4.1 Separating Illumination

With the class-specific albedo-shape matrix W available, we proceed to solve
the problem of separating illumination, v.i.z., for an arbitrary image h, find the
illuminant vector s and the identity signature f. For convenience of recognition,
we normalize f to the same range: ff1 = 1. Appendix-II presents the recovery
algorithm which infers the shadow pixels as well.

4.2 PIE Dataset

We use the Pose and Illumination and Expression (PIE) dataset in our ex-
periment. Fig. 2] shows the distribution of all 21 flashes used in PIE and their
estimated positions using our algorithm. Since the flashes are almost symmetri-
cally distributed about the head position, we only use 12 of them distributed on
the right half of the unit sphere in Fig.[2l In total, we used 68x12=816 images in
a fixed view as there are 68 subjects in the PIE database. Fig. Rlalso displays one
PIE object under the selected 12 illuminants. Registration is performed by align-
ing the eyes and mouth to canonical positions. No flow computation is carried
out for further alignment. We use cropped face regions. After the pre-processing
step, the actual image size is 50 x 50. Also, we only study gray images by taking
the average of the red, green, and blue channels. We use all 68 images under
one illumination to form a gallery set and under another illumination to form
a probe set. The training set is taken from sources other than the PIE dataset.
Thus, we have 132 tests, with each test giving rise to a recognition score.

4.3 Recognition Performance

The training set is first taken from the Yale illumination database [§]. There are
only 10 subjects (i.e. m = 10) in this database and each subject has 64 images
in frontal view illuminated by 64 different lights. We only use 9 lights and Fig.
Rlshows one Yale object under 9 lights.

Table [T lists the recognition rate for all test protocols for the PIE database
using the Yale database as the training set. Even with m = 10, we obtain quite
good results. One observation is that when the flashes become separated, the
recognition rate decreases. Also, using images under frontal or near-frontal illu-
minants as galleries produces good results. For comparison, we also implemented
the ‘Eigenface’ approach by training the projection directions from the same
training set. Its average recognition rate is only 35% while ours is 67%.
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Fig. 2. Left: Rows 1-2 display one PIE object under the selected 12 illuminants and
Rows 3-4 one Yale object under 9 lights used in the training set. Right: Flash distribu-
tion in the PIE database. For illustrative purposes, we move their positions on a unit
sphere as only the illuminant directions matter. ‘o’ means the ground truth and ‘x’ the
estimated values. It is quite accurate for estimation of directions of flashes near frontal
pose. But when the flashes are very off-frontal, accuracy goes down slightly.

Table 1. Recognition rate obtained by our rank constrained approach using the Yale
database (the left number in each cell) and Vetter database (the right number in each
cell) as the training set. ‘F” means 100 and ‘fnn’ flash number nn.

Gallery | f08 09  fI1 f12  f13  f14 15 fl16 17 {20 {21 22 |Average

Probe
f08 - 96/F 96/99 87/99 66/97 60/97 46/79 29/72 22/43 85/99 78/97 53/93| 65/88
f09 94/F - 96/99 96/99 90/99 87/99 56/97 40/91 24/60 84/97 96/97 68/97| 75/94
f11  |94/99 91/99 - 97/F T72/F 72/F 38/90 28/76 16/65 F/F 94/F 51/99| 69/93
f12  |88/99 94/99 97/F - 88/F 93/F 57/F 41/93 28/76 94/F F/F 76/F| 78/97
f13  |56/99 87/99 59/F 85/F - F/F 90/F 71/F 50/88 54/99 87/F F/F | 76/99
f14 |51/99 85/99 63/F 93/F F/F - 90/F 66/F 49/96 59/99 91/F 99/F | 77/99
f15 |33/84 40/94 37/93 49/F 85/F 88/F - 93/F 78/F 32/88 49/F 97/F | 62/96
f16  |19/69 26/87 26/78 32/90 59/F 44/F 84/F -  93/F 26/69 31/F 63/F| 46/89
f17 |14/44 28/60 19/51 26/71 50/84 41/91 68/99 94/F - 19/56 26/75 44/94| 39/75
f20 |90/97 85/97 99/F 97/F 65/F 69/F 38/90 26/74 21/68 - 93/F 53/F| 67/93
f21  |79/97 94/97 93/F F/F 88/F 94/F 62/F 49/97 28/82 91/F - 76/F 78/98
22 |43/90 65/97 46/96 75/F 99/F 99/F 97/F 76/F 59/99 43/97 74/F 70/98

Average|60/89 72/93 66/92 76/96 78/98 77/99 66/96 56/91 42/80 63/91 74/96 71/98] 67/93

Generalization capacity with m = 10 is rather restrictive. We now increase
m from 10 to 100 by using the Vetter’s 3D face database [I8]. As this is a
3D database, we actually have W available. However, we believe that using a
training set of m = 100 from other sources can yield similar performance. Table
[0 presents the recognition rates. Significant improvements have been achieved
due to the increase in m. The average rate is 93%. This seems to suggest that a
moderate rank of 100 is enough to span the entire face space under a fixed view.

As a comparison, Romdhani et. al. [I§] reported the recognition rates only
with ‘f12’ being the gallery set and their average is 98% while ours is 96%.
Our approach is very different from [I8]. In [I8] depths and texture maps of
explicit 3D face models are used, while our approach is image-based and recovers
albedos and surface normals. 3D models can be then be reconstructed. In the
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experiments, (i) we use the ‘illum’ part of the PIE database that is close to
the Lambertian model and they use the ‘light’ part that includes an ambient
light; (ii) we use gray-valued images and they use color images; (iii) we assume
known pose but unknown illumination but they assume unknown pose but known
illumination; and (iv) compared to , our alignment is rather crude and can
be improved using flow computations. We believe that our recognition rates can
be boosted using the color images and finer alignment.

5 Conclusions

We presented an approach that naturally combines the rank-constraint for iden-
tity with illumination modeling. By using the integrability and symmetry con-
straints, we then achieved a linear algorithm that recovers the albedos and sur-
face normals for a class of face images under the most general setting, i.e., the
observation matrix consists of different objects under different illuminations.
Further, after separating the illuminations, we obtained illumination-invariant
identity signatures which produced good recognition performances under illu-
mination variations. We still need to investigate pose variations and extreme
lighting conditions that cause more shadows.
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Appendix-I: Recovering R, F, and S from H

This appendix presents an iterative algorithm that recovers R, F and S from
the observation matrix H. In fact, we also infer I = [{|x [=; 1;(x)]], which is an
indication matrix for H.

We first concentrate on the most difficult part of updating R with F, S, and
I fixed. We take vector derivatives of £ with respective to {r;;; i = a,b,¢; j =

1,...,m} and treat the three terms in £ separately.
[About 50] With fj/ = [ ;nzl fj/j] and Syt = [Sj/a,Sj/b,Sj/c]T,
880 n d

or. SN i W) TR @ 50) = o J(x) fe55574
¥}

J'=1X=1
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n d m
ST 1i000 Y0 S W) ek fiks i — by W) fegs i

j'=1X=1 l=a,b,c k=1

m n d
ST S apofimsi s Ty

l=a,b,c k=1 j'=1X=1

n d
- Z Z 10y e x) fir 850w (x)

j'=1X=1
m
= > > Ok —1, (15)
l=a,b,c k=1
where {Oi-’;-;l =a,b,c;k =1,...,m} are properly defined 3m x 3 matrices, and

7i; is a properly defined 3m x 1 vector.
[About &;.] Using forward differences to approximate partial derivatives E‘,

98wy ~ 4 5 . Oy ) P .
By = Gyt Gyt ar s = jer1y) ~ Vi) (16)
i) 4 A N STER Py A
z = Ci+ly) TGy T, = Glytl) T Gy

we have

Yj(a,y) A Oj(a+1,9)Ci(2m) V() Ci @t 1,9) T (@) Ciey+1) —j(ay+1) Ciay)- (17)

Suppose we are given the product of albedo and surface normal as in ([IIl), we
can derive the albedo p;(x) and surface normals a;(x), bj(x), and ¢;(x) as follows:

AT ~T ~T
P =\ (Whoras)? + (i )2 + (b res)?. (18)
. "A"r(rx) Faj P "A"r([‘x) foj "AVr(rx) Fej (19)
Aix) = , o biy = ————, Cix) = )
0 i T T i T T Thi

So, their partial derivatives with respect to r,; are

~ N N ~T
Dijxy W T WoeoWpglaj 1050

= — Wi Fai = W), (20)
Ora; Pj(x) o p?(x) Pjx) .
N N ~T ~ » ~ ~ ~
ajxy T WeoWpglei  —a;xbi o 0400 —a5065(x)
= —W(x)faj 3 = W(x)> = W(x)-
Ore; P Pjx) Ore; Pj(x)
(21)

Similarly, we can derive their partial derivatives with respect to ry; and r.;, which
are summarized as follows:
- s - 7.2
Ok _ Zhioolia g, o ki 1 - ki G, kL€ {arbich, kA1 (22)
In; Pi(x) Orkj Pjx)
3 Partial derivatives of boundary pixels require different approximations. But, similar
derivations (skipped here due to space limitation) can be derived.
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J(X) _ O 94,00 _ 98%) 9, _ 98%) ol Sl
Notice that = Br., 0 Ot = ofe, , and or, = “on, , which implies

saving in computations.
We now compute the partial derivative of «;(, ,) with respect to rg;:

6@ A(w» ) a 7
Tor = gy Wit~ bitew i) e

J(w,y+1)CJ )}

Uj)Ci@y) T 4j(2,y+1)Cj(2,y+1) - T
— W(z,y)W(a,y+1) W(z, +1)W T }ra
Pitaw)Pity ) D@D T e D) e e
aj($+17y) j(x+1,y) ~ T Aj(z,y)Cj(z,y)

~T
W(at1,4)Wiz,y) — (w,y)W(IH,y)}er

Dj(z,y)Pj(z+1,y) Pj(a,y)Pj(x+1,y)

Qjeapbjen) . T j(as1.9)Di(e41) - T
T W ) Wi y) — Wt 1,5) W,
PiwaPitetry T D Pier 1) )
AZ ~2
1- Cj(@y) T l_aj(aay-kl) A

< T
W(z,y)W(z,y+1) — W(w,y+1>W(z,y)}rcj

Pj(z.y)Pj(e,y+1) Pj(z.y)Pj(z+1.y)
- Pa](w y)Faj + P G(x,y)bi + Pag(a: e = Z Paj(w,y)rl]’ (23)
l=a,b,c
where Paj(m ) PZj(z,y)? and Pa](x y) are properly defined matrices of dimension
3m x 3m. By the same token, using properly deﬁned Poj(z.y) ng(w y), bj(2.y)
Pty PZj(m,y) and Pg;, ), we can calculate 2 e =3 be Pij(a,yhy for

1= a,b,c, and, finally,

d d
0&; .
oy Do D Piconi = D Pt Py =D aieoPig-  (24)

X=1 l=a,b,c l=a,b,c X=1

[About E.] The symmetry constraint term [3;x) defined as in ([I3) can be
expressed as

T Aa T Ab T Ac
Bl = aj Qs Tai + 1 Qx e + e Qe (25)

where Qfy), Ql(’x), and Q{y) are symmetric matrices with size 3m x 3m:

a A " ~ - T - A - - T Ac
Qi) = (W) +Ws)) (W) +W(x) ) >Ql()x) = (Wx) —W(xy) (W(x) —W(x)) Q) = ngx).

(26)
The derivatives of ﬁ?(x) /2 and &; with respect to r,j, rpj, and re; are
0B /2t _ 4 RGN
(‘z)(r) ) Figs Z Q(X) g =Q'ry;; Q= Z Q(x). (27)
Y X=1

Putting the above derivations together and using % =0, we have
ij

m
Z Zoyjrlk—i-)\l Z Péjrlj +/\2erij =it =a,b,c; j=1,...,m. (28)
l=a,b,c k=1 l=a,b,c
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We therefore arrive at a set of equations linear in {r;;; i = a,b,¢; j=1,...,m}
that can be solved easily. After finding the new R, we normalize it using
R=R/||Rll2.

We now illustrate how to update F = [=; f;], S = [= s;], and I = [=; ;]
with R fixed (or W fixed). First notice that they are only involved in &. Moreover,
f;, s; and I; are related with only the image h;. This becomes the same as the
illumination separation problem defined in Section [4 and Appendix-II presents
such a recovery algorithm, which also is iterative in nature. After running one
iterative step to obtain the updated F, S, and I, we proceed to update R again
and this process carries on until convergence.

Appendix-II: Recovering f and s from h given W

This recovery task is equivalent to minimizing the cost function defined as
En(fs) = [To(h—W (Fos)|* + (1TF - 1), (29)

where I;x1 indicates the inclusion or exclusion of the pixels of the image h and
o denotes the Hadamard (element-wise) product. Notice that ([2Z9) actually can
be easily generalized as a cost function for robust estimation if the Ly norm ||.|
is replaced by a robust function, and I by an appropriate weight function.

The following algorithm is an extension of bilinear analysis, with occlusion
embedded. Firstly, we solve the least square (LS) solution f, given s and I.

f= H’{]T {I (; h] ;o W= [ (Tis)]asm- (30)

where [.]T denotes the pseudo-inverse. Secondly, we solve the LS solution s, given
fand I:

s=WL(Toh); Ws=][[=;alf, [=:blf, [=: ci]f Juxs = [Af,Bf,Cf],  (31)

where Agxm = [= ail, Baxm = [=i bi], and Cyxm = [=; ¢ contain the
information on the product of albedos and z, y, and z directions of the surface
normals, respectively. In the third step, given f and s we update I as follows:

I=[lh-W(f@s)<nl, (32)

where 7 is a pre-defined threshold.

Note that in Eqs. (BQ) and (31)), additional saving in computation is possible.
We can form matrices W;c and W/s and vector h’, with a reduced dimension,
from W¢, Ws, and h, respectively, by discarding those rows corresponding to the
excluded pixels and applying the primed version in (30) and (BI)).

For fast convergence, we use the following initial values in our implementa-
tion. We estimate s using the algorithm presented in [I9] and set I to exclude
those pixels whose intensities are smaller than a certain threshold.

4 This is a Matlab operation which performs an element-wise comparison.
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