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Abstract. We present a method for estimating intrinsic images from a
fixed-viewpoint image sequence captured under changing illumination di-
rections. Previous work on this problem reduces the influence of shadows
on reflectance images, but does not address shading effects which can sig-
nificantly degrade reflectance image estimation under the typically biased
sampling of illumination directions. In this paper, we describe how biased
illumination sampling leads to biased estimates of reflectance image deriva-
tives. To avoid the effects of illumination bias, we propose a solution that
explicitly models spatial and temporal constraints over the image sequence.
With this constraint network, our technique minimizes a regularization func-
tion that takes advantage of the biased image derivatives to yield reflectance
images less influenced by shading.

1 Introduction

Variation in appearance caused by illumination changes has been a challenging
problem for many computer vision algorithms. For example, face recognition is com-
plicated by the wide range of shadow and shading configurations a single face can
exhibit, and image segmentation processes can be misled by the presence of shadows
and shading as well. Since image intensity arises from a product of reflectance and
illumination, one approach for dealing with variable lighting is to decompose an
image into a reflectance component and an illumination component [7], also known
as intrinsic images [1]. The reflectance image, free of illumination effects, can then
be processed without consideration of shadows and shading.

Decomposition of an image into intrinsic images, however, is an underconstrained
problem, so previous approaches in this area introduced additional constraints to
make the problem tractable. In [6], it is assumed that the illumination component
is spatially smooth while the reflectance component exhibits sharp changes, such
that low-pass filtering of the input image yields the illumination image. Similarly,
[3] assumes smoothness of illumination and piecewise constant reflectance, so that
removing large derivatives in the input image results in the illumination image. In
addition to illumination smoothness, Kimmel et al. [5] include constraints that the
reflectance is smooth and the illumination image is close to the input image.



Instead of relying on smoothness constraints, Tappen et al. [10] proposed a
learning-based approach to separate reflectance edges and illumination edges in
a derivative image. Although this method successfully separates reflectance and
shading for a given illumination direction used in training, it is difficult to create
such a prior to classify edges under arbitrary lighting. Another edge-based method
was proposed by Finlayson et al. [11] that suppresses color derivatives along the
illumination temperature direction to derive a shadow-free image of the scene. In
addition to shadow edges, this approach may remove texture edges that also have
a color derivative in the illumination temperature direction.

Rather than using only a single input image, Weiss [9] deals with the simpler
scenario of having an image sequence captured from a fixed viewpoint with changing
illumination conditions. This method employs a ML estimation framework based
on a prior that illumination images yield a Laplacian distribution of derivatives
between adjacent pixels. Experimental results demonstrate that this technique ef-
ficiently and robustly removes cast shadows from reflectance images. Shading on
non-planar surfaces, however, can significantly degrade ML estimation of intrinsic
images by altering the distribution of derivatives, especially in the typical case of
a biased illumination distribution that is not centered around the surface normals
of the adjacent pixel pair. More recently, Matsushita et al. [12] extended Weiss’s
method to handle the scenes where the Lambertian assumption does not hold. Us-
ing the reflectance image estimated by ML estimation as a scene texture image,
their method derives time-varying reflectance images instead of assuming a single
reflectance image.

In our proposed method, we also take as input an image sequence and analyze the
derivative distributions. Because of the effects of illumination bias on the derivative
distributions, we present an alternative method for processing image derivatives,
based on explicit modeling of spatial and temporal constraints over the image se-
quence. With this constraint network, a reflectance image and a set of illumination
images are estimated by minimizing a function based on smoothness of illumina-
tion and reflectance. Although the derivative distributions are unsuitable for ML
estimation, our technique nevertheless takes advantage of derivative distribution
information to spatially vary the weight of the smoothness constraints in a manner
unlike previous regularization-based methods.

The goal of this work is closely related to that of photometric stereo with un-
known light sources and spatially varying albedo. One strong assumption in most
uncalibrated photometric stereo approaches [19–21] is that there are no cast shad-
ows. However, it is clear that this assumption does not hold in many situations for
real world scenes. Yuille et al. [22] have proposed a method to handle cast shadows
using robust statistics; however, one drawback of the method is that it assumes
a single point source in each image. Photometric stereo yields accurate results,
but generally it is necessary to assume limiting conditions. While the photometric
stereo framework relies on the structural smoothness, our method relies more on the
smoothness of reflectance and illumination images. In the context of photometric
stereo, Wolff and Angelopoulou [4] acquired multiple stereo pairs of images of the
same scene under different illumination conditions. With two stereo pairs they ob-



tain a stereo pair of photometric ratio images, in which the albedo term is removed
in order to extend geometric stereo reconstruction to smooth featureless surfaces.

The remainder of the paper is organized as follows. Sec. 2 details the problem
of illumination bias and the resulting effects of shading on derivative distributions.
In Sec. 3, we describe the constraints on the energy minimization process and the
influence of the derivative distribution. Our algorithm is presented in Sec. 4, followed
by experimental results in Sec. 5 and a conclusion in Sec. 6.

2 Effect of Illumination Bias

Before describing the effect of illumination bias on derivative distributions, we begin
with a brief review of intrinsic images and the ML estimation technique.

Under the Lambertian assumption, as expressed in the following equation, an
input image I arises from a product of two intrinsic images: the reflectance image ρ
and the illumination image L. Since the viewpoint of the image sequence is fixed, ρ
does not vary with time t. The illumination is comprised by an ambient term α and
a direct illumination term LD, which is the product of the illumination intensity
E, a binary shadow presence function g and the inner product of surface normal n
and illumination direction l:

I(x, y, t) = ρ(x, y)L(x, y, t)

= ρ(x, y)
{

LD(x, y, t) + α(x, y, t)
}

= ρ(x, y)
{

E(t)g(x, y, t)
(

n(x, y) · l(t)
)

+ α(x, y, t)
}

= ρ(x, y)E(t)
{

g(x, y, t)
(

n(x, y) · l(t)
)

+ α′(x, y, t)
}

(1)

where n · l is always non-negative, and α′ indicates the ambient term normalized by
the illumination intensity E. In the ML estimation framework of [9], n derivative
filters fn are first applied to the logarithms of images I(t). For each filter, a filtered
reflectance image ρn is then computed as the median value in time of fn ? log I ,
where ? represents convolution:

log ρ̂n(x, y) = mediant{fn ? log I(x, y, t)}. (2)

The filtered illumination images log Ln(x, y, t) are then computed using the esti-
mated filtered reflectance images log ρ̂n according to

log L̂n(x, y, t) = fn ? log I(x, y, t)− log ρ̂n(x, y). (3)

Finally, a reflectance image ρ and illumination images L are recovered from the
filtered reflectance images ρn and illumination images Ln(t) through the following
deconvolution process,

(log ρ̂, log L̂) = h ?
(

∑

n

fr
n ? (log ρ̂n, log L̂n)

)

(4)

where fr
n is the reversed filter of fn, and h is the filter which satisfies the following

equation:

h ?
(

∑

n

fr
n ? fn

)

= δ. (5)
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Fig. 1. Illumination conditions. (a) Uniform illumination, (b) biased illumination.

From (2), it can be shown that for two adjacent pixels with intensities I1(t) and
I2(t),

ρ̂n = mediant

I1(t)

I2(t)
= mediant

ρ1

ρ2
·
E(t)

{

g1 ·
(

n1 · l(t)
)

+ α′
1

}

E(t)
{

g2 ·
(

n2 · l(t)
)

+ α′
2

} . (6)

We assume that α′ is constant over an image, i.e., α′
1(t) = α′

2(t). Cast shadows affect
this equation only when g1 6= g2. Since this instance seldom occurs, cast shadows do
not affect the median derivative values used in ML estimation. It can furthermore
be seen that when n1 = n2, shading does not affect ML estimation since n1 ·l = n2 ·l
and consequently ρ̂n = ρ1/ρ2.

When a pair of pixels have different surface normals, ML estimation can also
deal with shading in cases of unbiased illumination samples. For a pair of adjacent
pixels with surface normals n1 and n2, the set Ωl of illumination samples l(t) are
unbiased only under the following condition:

medianl(t)∈Ωl

{

n1 · l(t)− n2 · l(t)
}

= 0. (7)

In other words, the illumination is unbiased for a given pair of pixels when the il-
lumination image value L(x, y) of both pixels is the same for the median derivative
value. Otherwise, the illumination distribution is biased. Figure 1 shows an illus-
tration of unbiased illumination and biased illumination for a given pair of pixels.
With unbiased illumination as given in (7), it can be seen that (6) results in the
correct value ρ1/ρ2.

When a pair of adjacent pixels have different surface normals, illumination bias
will cause the ML estimation to be incorrect, because n1 · l 6= n2 · l for the median
derivative value. In this case, the illumination ratio in (6) does not equal to one, and
consequently ρ̂n 6= ρ1/ρ2. This can be expected since different shading is present in
the two pixels for every observation.

The case of different surface normals with illumination bias is a significant one,
because for a pair of adjacent non-planar pixels, unbiased illumination is rare. So
for most pairs of non-planar pixels, ML estimation fails to compute the correct
reflectance ratio and the estimated reflectance image contains shading. Figure 2
shows a typical result of ML estimation applied to a synthetic scene with non-
planar surfaces. A ball on a plane is lit from various directions as exemplified in



Fig. 2. Shading effect remains on reflectance estimate with ML estimation. Left: an input
image sequence, Right: the estimated reflectance image with ML estimation.

the input images on the left side of Figure 2. Although the illumination samples are
unbiased for some pairs of pixels, they are biased for most pairs of adjacent pixels.
As a result, shading remains in the estimated reflectance image as shown on the
right side of the figure.

3 Solution Constraints

Since ML estimation is generally affected by shading, we propose an alternative
solution method based on the constraints described in this section. Let us denote
i, j as labels for illumination directions, p, q for adjacent pixels, and N, M for the
number of observed illumination conditions and the number of pixels in an image,
respectively.

From a sequence of images, we can derive spatial constraints between adjacent
pixels (inter-pixel) and temporal constraints between corresponding pixels under
different light directions (inter-frame). Moreover, we employ smoothness constraints
to make the problem tractable.

[Inter-frame constraint]
Assuming that the scene is composed of Lambertian surfaces, the reflectance

value at each point ρ is constant with respect to time. We can thereby derive a
temporal constraint as follows:

Ip(ti)

Ip(tj)
=

Lp(ti)

Lp(tj)
, 0 ≤ i, j < N ; i 6= j. (8)

This does not determine the absolute values of Ls; however, it fixes the ratios among
Lps.

[Inter-pixel constraint]
Letting ωp be a set of pixels that are neighbours of p,

Ip(ti)

Iq(ti)
=

ρp

ρq

·
Lp(ti)

Lq(ti)
, 0 ≤ i < N ; q ∈ ωp. (9)
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Fig. 3. Inter-frame and inter-pixel constraints. A set of constraints composes a constraint
network.

This constraint can possibly be applied to non-neighboring pixels, however, we
restrict this to be applied only to neighboring pixels because we use the flatness
constraint and smooth reflectance constraint in the energy minimization step.

These constraints can be derived from (1), and they compose a 3-D constrained
network about L and a 2-D constrained network about ρ as illustrated in Fig. 3.
We use them as hard constraints and force ρ and L to always satisfy the following
equation:

∑

p,i,j;i6=j

(

Ip(ti)

Ip(tj)
−

Lp(ti)

Lp(tj)

)2

+
∑

p,q,i;q∈ωp

(

Ip(ti)

Iq(ti)
−

ρp

ρq

·
Lp(ti)

Lq(ti)

)2

= 0. (10)

[Smoothness constraints]
In addition to the above constraints, our technique favors smoothness over both

ρ and L. Smoothness is a generic assumption underlying a wide range of physical
phenomena, because it characterizes coherence and homogeneity. Based on the fact
that retinal images tend to be smooth according to natural image statistics [16], we
assume that both ρ and L are smooth as well. By formulating these two assump-
tions into an energy function, we derive intrinsic images by an energy minimization
scheme.

The choice of energy function E(ρ, L) is a critical issue. Various kinds of energy
functions that measure the smoothness of observed data have been proposed. For
example, in regularization-based methods [13, 14], the energy minimization function
makes the observed data smooth everywhere. This generally yields poor results
at object boundaries since discontinuities should be preserved. One discontinuity-
preserving function is Geman and Geman’s MRF-based function [15].

Although our method assumes smoothness of L, this condition clearly does not
hold when the surface normals of adjacent pixels differ. In such instances, the smooth



L constraint should be weakened. To estimate the amount of difference between
neighboring surface normals, we use the information present in the derivative dis-
tribution.

If a pair of pixels lie on a flat surface, the values of Ip(t)/Iq(t) are almost always
equal to 1 except when only one of the pixels is shadowed, as discussed in [9]. We
use this strong statistic and define an error function based on the hypothesis that
Ip and Iq share the same surface normal:

epq(ti) =

∣

∣

∣

∣

arctan

{

mediant

(

Ip

Iq

)}

− arctan

{

Ip

Iq

}
∣

∣

∣

∣

(11)

In (11), mediant(Ip/Iq) corresponds to ML estimation, which gives the ratio of
reflectance if p and q are co-planar. We evaluate the angle between the ratio of
reflectance and the ratio of observed intensity to determine if the observation sup-
ports the flatness hypothesis. To determine the amount of support for the flatness
hypothesis, a threshold ε is used:

ξpq(ti) =

{

1
(

epq(ti) < ε : accept
)

0
(

epq(ti) ≥ ε : reject
) (12)

Finally, we compute the ratio of the number of acceptances ξ to the number of total
observations N to test the surface-flatness hypothesis. When the surface flatness f
is high, it is likely that L is smooth. On the other hand, when f is not high, the
smoothness assumption for L should be weakened. We define the flatness f as the
square of the acceptance ratio:

fpq =

(∑

i ξpq(ti)

N

)2

. (13)

Using the surface flatness evaluated by (13), we define an energy function EΩ

to minimize:

EΩ =
∑

p

Ep(∆ρp, ∆Lp(t))

=
∑

p

∑

q∈ωp

{

(ρp − ρq)
2 + λfpq(ti)

(

Lp(ti)− Lq(ti)
)2}

(14)

where λ is a coefficient that balances the smoothness of ρ and L.
Equation (14) always converges to a unique solution because EΩ is convex with

respect to ρp and Lp. This is confirmed by taking Ep’s Hessian Hp

Hp =

[

∂2Ep/∂ρ2 ∂2Ep/∂ρ∂L
∂2Ep/∂L∂ρ ∂2Ep/∂L2

]

= 2

[

∑

q∈ωp
1 0

0 λ
∑

q∈ωp
fpq

]

, (15)

the leading principal minors of which are 2
∑

q∈ωp
1 > 0, 2λ

∑

q∈ωp
fpq > 0 where

λ > 0, fpq > 0, so that the function Ep is strictly convex. Since the sum of convex
functions is convex, EΩ is also convex because EΩ =

∑

p Ep.



4 Algorithm

With the constraints described in the preceding section, our algorithm can proceed
as follows.

[Step 1 : Initialization] Initialize ρ and L.
[Step 2 : Hard constraints] Apply the inter-frame and inter-pixel constraints

expressed in (10). Since it is difficult to minimize the two terms in (10) simultane-
ously, we employ an iterative approach for minimization.

1. Inter-frame constraint. Update Lp(ti).

Lp(ti)←
∑

j 6=i

(

Ip(ti)

Ip(tj)
Lp(tj)

)

/(N − 1) (16)

2. Inter-pixel constraint. Update Lp(ti) and ρp with ratio error β. Letting Mωp
be

the number of p’s neighboring pixels,

βp(ti) =

(

∑

q∈ωp

Ip(ti)

Iq(ti)
·
ρqLq(ti)

ρpLp(ti)

)

/Mωp
. (17)

Since the error ratio βp(ti) can be caused by some unknown combination of ρ
and L, we distribute the error ratio equally to both ρ and L in (18) and (20),
respectively.

Lp(ti)←
√

βp(ti)Lp(ti), (18)

βp =

(

∑

i

βp(ti)

)

/N, (19)

ρp ←
√

βpρp. (20)

3. Return to 1. unless Equation (10) is satisfied.

[Step 3 : Energy minimization]
Evaluate the energy function (14), and find ρ and L that lower the total energy.

If the total energy can still decrease, update ρ and L, then go back to Step 2. Other-
wise, we stop the iteration. By fixing ρq and Lq in (14), the energy minimization is
performed for each Ep using the conjugate gradient method. The conjugate gradient
method is an iterative method for solving linear systems of equations which con-
verge faster than the steepest descent method. For further details of the algorithm,
readers may refer to a well presented review [18].

5 Experimental Results

To evaluate our method, we carried out experiments over one synthetic image se-
quence and three real world image sequences. In these experiments, we used 11
different lighting conditions, and set λ = 0.4. We used ε = 0.02 which is empirically
obtained in Equation (12) for all experiments. The determination of ε has depen-
dency on minimum signal-to-noise ratio. Starting with constant initial values, ρ and
L are iteratively updated. There is no restriction about the initial values, however,
we used flat images for their initial values because of the smoothness assumption.



Fig. 4. Input image samples from synthetic scene. Illumination samples are chosen to be
biased.

Fig. 5. Estimated reflectance images. Left : our method, Center : the ground truth, Right
: ML estimation.

5.1 Synthetic scene

For a synthetic scene, we prepared a Lambertian scene with a sphere and a plane
as shown in Figure 4. The illumination samples are biased in most cases, since most
of them lie on the left-hand side of the images. Figure 5 shows the result of our
method, the ground truth, and the result of ML estimation from left to right. Due
to the scaling ambiguity of the reflectance images, we adjusted the scaling of each
reflectance image for better comparison and display. As we can clearly see in the
figure, our method can successfully derive shading-free a reflectance image which is
close to the ground truth.

5.2 Real world scenes

For real world scenes, we captured two image sequences of toy scenes and used
Yale Face Database B [17]. Figure 6 and Figure 8 show the result of reflectance
estimation from Lambertian scenes. In both figures, the left image shows the result
of our method, while the right image shows the result of ML estimation. As we
can see clearly in them, our method handles shading more correctly and shading
effect is much reduced in our reflectance estimates. Figure 7 and 9 show the esti-
mated illumination images and corresponding input images. In illumination images,
reflectance edges such as texture edges are well removed.

On the other hand, Figure 10 shows a negative result, especially on the hair.
Since the human hair shows high specularity, and it is hard to model it as Lam-
bertian. This non-Lambertian property affects to our method and turns those area
into white. This is because our method is based on Lambertian model, and it im-
plies that our method does not handle specular reflections well. However, as for the



(a) (b)

Fig. 6. Toy scene 1. Estimated reflectance images. (a) Our method, (b) ML estimation.

(a) (b)

Fig. 7. (a) Estimated illumination image, and (b) the corresponding input image.

non-specular part such as the human face, shading effect is much reduced by our
method.

6 Conclusion

We have presented a method that robustly estimates intrinsic images by energy min-
imization. Unlike previous methods, our method is not affected by illumination bias
which generally exists. In our framework, we explicitly modeled spatial and tempo-
ral constraints over the image sequence to form a constraint network. Using this as a
hard constraint, we minimized an energy function defined from the assumptions that
reflectance and illumination are smooth. By weighting these smoothness constraints
according to a surface flatness measure estimated from derivative distributions, we
estimated intrinsic images with improved handling of shading. Evaluation with both
synthetic and real world image sequences shows that our method can robustly es-
timate shading-free reflectance image and illumination images. Some of the next
steps of our research will include the acceleration of energy minimization part and
extension of our model to correctly handle specularity.
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