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Abstract. Complete 3-D modeling of a free-form object requires ac-
quisition from multiple view-points. These views are then required to
be registered in a common coordinate system by establishing correspon-
dence between them in their regions of overlap. In this paper, we present
an automatic correspondence technique for pair-wise registration of dif-
ferent views of a free-form object. The technique is based upon a novel
robust representation scheme reported in this paper. Our representation
scheme defines local 3-D grids over the object’s surface and represents
the surface inside each grid by a fourth order tensor. Multiple tensors
are built for the views which are then matched, using a correlation and
verification technique to establish correspondence between a model and
a scene tensor. This correspondence is then used to derive a rigid trans-
formation that aligns the two views. The transformation is verified and
refined using a variant of ICP. Our correspondence technique is fully
automatic and does not assume any knowledge of the viewpoints or re-
gions of overlap of the data sets. Our results show that our technique is
accurate, robust, efficient and independent of the resolution of the views.

1 Introduction

Three dimensional modeling of objects has become a requirement in a large
number of fields ranging from the entertainment industry to medical science.
Various methods are available for scanning views of 3-D objects to obtain 2.5-D
images in the form of a cloud of points (see Fig.[d), but none of these methods
can completely model a free-form object with a single view due to self occlusion.
Multiple overlapping views of the object must be acquired to complete the 3-D
model. These views are then required to be registered in a common coordinate
system, but before they can be registered, correspondence must be established
between the views in their regions of overlap. Points on two different views that
correspond to the same point on the object are said to be corresponding points.
These correspondences are then used to derive an optimal transformation that
aligns the views. The automatic correspondence problem is difficult to tackle
due to two main reasons. First, there is no knowledge of the viewing angles
and second, there is no knowledge about the regions of overlap of the views.
The latter implies that every point on one view does not necessarily have a
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corresponding point in the other view and that there is no a priori knowledge of
correspondences.

Existing techniques of correspondence are based on various assumptions and
are not fully automatic [I]. The classic Iterated Closest Point (ICP) algorithm
[2], Chen and Medioni’s algorithm [3] and registration based on maximizing mu-
tual information [4] all require initial estimates. In case the initial estimate is
not accurate, these techniques may not converge to the correct solution. Some
techniques like the RANSAC-based DARCES [5] are based upon exhaustive se-
arch and are not efficient. Bitangent curve matching [6] calculates first order
derivatives which are sensitive to noise and require the underlying surface to be
smooth. Moreover, bitangent curves are global features and may not be fully
contained inside the overlapping region of the views. Three tuple matching [7]
calculates the first and second order derivatives which are sensitive to noise and
require the underlying surfaces to be smooth. SAT matching [§] requires the un-
derlying surfaces to be free of topological holes. Geometric histogram matching
[9] makes use of a 3-D Hough transform [T0] which is computationally expensive.
Roth’s technique [IT] relies upon the presence of a significant amount of texture
on the surface of the object for consistent extraction of feature points from their
intensity images. Matching oriented points [I2] uses spin image representation
which is not unique and gives a lot of ambiguous correspondences. These cor-
respondences must be processed through a number of filtration stages to prune
out incorrect correspondences making the technique inefficient.

In this paper, we present a fully automatic correspondence technique which
does not assume any prior knowledge of the view-points or the regions of overlap
of the different views of an object. It is applicable to free-form objects and does
not make assumptions about the shape of the underlying surface. Our technique
is inspired by the spin image representation [13]. However, instead of making 2-
D histograms of vertex positions, we represent the surface of the object in local
3-D grids. This results in a unique representation that facilitates accurate corre-
spondences. The strength of our technique lies in the new representation scheme
that we have developed. Our correspondence technique starts by converting two
views of an object, acquired through a 3-D data acquisition system, into trian-
gular meshes. Normals are then calculated for each point and triangular facet.
Sets of two points along with their normals on each triangular mesh are then
selected to define 3-D grids over the surface. The surface area and normal infor-
mation in all the bins of each grid is then stored in a tensor. These tensors are
matched to establish correspondences between the two views. Tensors that give
the best match are then used to compute a rigid transformation that aligns the
two views. This transformation is refined using a variant of the ICP algorithm

The rest of this paper is organized as follows. In Section 2 we describe our
new 3-D free-form object representation scheme. In Section 3 we explain the
matching process to establish correct correspondences between the two views.
Section 4 gives details of our experimental results. In Section 5 we discuss and
analyze our results. Finally conclusions are given in Section 6.
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2 A New Representation Scheme Based on Tensors

In this section we will describe our new tensor based 3-D free-form object re-
presentation scheme. Before we construct the tensors, the n data points are first
converted into triangular meshes and normals are calculated at each vertex and
triangular facet. This information is stored in a data structure along with the
neighbourhood polygons information for each point and each polygon. Next a set
of two points, along with their normals are selected to define a 3-D coordinate
basis. To avoid the C§ combinatorial explosion of the points, we select points
that are at a certain fixed distance from each other. This distance is defined as
a multiple of the mesh resolution. In our experiments we have set this distance
to four times the mesh resolution, which is far enough to make the calculation
of the coordinate basis less sensitive to noise and close enough for both points
to lie inside the region of overlap. To speed up the search for such points we
consider points that are four edges away from each other. This can be easily
performed by checking the fourth and fifth neighbourhood of the point under
consideration. The center of the line joining the two points defines the origin of
the new 3-D basis. The average of the two vectors defines the z-axis, since we
want the z axis to be pointing away from the surface. The cross product of the
two vectors defines the x-axis and finally the cross product of the z-axis with the
x-axis defines the y-axis.

This 3-D basis and its origin is used to define a 3-D grid centered at the
origin. Two parameters need to be selected, namely, the number of bins in the
3-D grid and the size of each bin. Varying the number of bins from less to more
varies the representation from being local to global. We have selected the number
of bins to be 10 in all the directions making the grid take the shape of a cube.
The bin size defines the level of granularity at which the information about the
object’s surface is stored. The bin size is kept as a multiple of the mesh resolution
because the mesh resolution is generally related to the size of the features on
the object. In our experiments we have selected a bin size equal to the mesh
resolution.

Once the 3-D grid is defined (see Fig. [[] and [2) the area of the triangular
mesh intersecting each bin is calculated along with the average surface normal
of the surface at that position. Next the angle between this surface normal and
the z-axis of the grid is calculated. This angle is an estimate of the curvature of
the surface at that point. This area and angle information is stored in a fourth
order tensor which corresponds to a local representation of the surface in the
3-D cubic grid. To find the area of intersection of the surface with each cubic
bin, we start from one of the two points that were used to define the 3-D grid
and visit each triangle in its immediate neighbourhood. Since the points are
approximately two mesh resolutions away from the origin they are bound to be
inside the 3-D grid. The area of intersection of the triangle and a cubic bin of
the grid is calculated using Sutherland Hodgman’s algorithm [14]. Once all the
triangles in the immediate neighbourhood of the point have been visited and their
intersection with the grid bins has been calculated, the neighbourhood triangles
of these triangles are visited. This process continues until a stage is reached
when all the neighbouring triangles are outside the 3-D grid at which point the
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computation is stopped. While calculating the area of intersection of a triangle
with a cubic bin the angle between its normal and the z-axis is also calculated
and stored in the fourth order tensor. Since more than one triangle can intersect
a bin, the calculated area of intersection is added to the area already present
in that bin, as a result of its intersection with another triangle. The angles of
the triangular facets, crossing a particular bin, with the z-axis are averaged by
weighting them by their corresponding intersection area with that bin.

Fig. 1. Left: Data points of a view of the bunny converted into a triangular mesh. (Data
courtesy of the Robotics Institute, CMU) Right: The cube represents the boundary of
a 3-D grid. Only the triangles that contribute toward the tensor corresponding to this
grid, as shown, are considered in the calculation of the tensor corresponding to this
grid.

3 Matching Tensors for Correspondence and Registration

Since a tensor corresponds to a representation of the 3-D surface inside an ob-
ject centered grid, different views of the same surface will have similar tensors.
Minor differences may exist between these tensors as a result of different possi-
ble triangulations of the same surface due to noise and variations in sampling.
However, corresponding tensors will have a better match as compared to the
non-corresponding tensors. We use the linear correlation coefficient to match
tensors. Corresponding tensors will give a high correlation coefficient and can
easily be differentiated.

To establish correspondence between a model view and a scene view of an
object, first the tensors for all the point pairs of the model (that are four times
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the mesh resolution apart) are calculated. Restricting the selection of point pairs
significantly reduces the number of possible pairs from C%. The search for such
points is speeded up by searching the fourth and fifth neighbourhood of the
points only. Next a point is selected at random from the scene and all possible
points that can be paired with it are identified. A tensor is then calculated for the
first point and one of its peers. This tensor is then matched with all the tensors
of the model. If a significant match is found, the algorithm proceeds to the
next stage of verification, else it drops this tensor and calculates another tensor
using the first point and another one of its remaining peers. The tensors are
matched only in those bins where both tensors have surface data (this approach
has also been used by Johnson [I2]). This is done to cater for situations where
some part of the object may be occluded in one view. Matching proceeds as
follows. First, the overlap ratio Rp of the two tensors is calculated according
to Equation [[I If Rp is greater than a threshold ¢,, the algorithm proceeds to
calculate the correlation coefficient of the two tensors in their region of overlap.
If Ro is less than t,., the model tensor is not considered for further matching. In
our experiments we found that ¢, = 0.6 gave good results.

_ ZIsm
Ro = S U (1)

In this Equation I, is the intersection of the occupied bins of the scene and
the model tensor. Uk, is the union of the occupied bins of the scene and the
model tensor.

If the correlation coefficient of the scene tensor with some model tensors is
significantly higher than the correlation coefficients with the remaining model
tensors, then all such model tensors are considered to be potential corresponden-
ces. Such model tensors are taken to be those having correlation coefficient two
standard deviations higher than the mean correlation coefficient of the scene
tensor with all the model tensors. The best matching tensor is verified first.
Verification is performed by transforming one of the two scene points, used to
calculate the tensor, to the model coordinate system. This transformation is cal-
culated by transforming the corresponding 3-D basis of the scene tensor to the
3-D basis of the model tensor (Eqn. 2l and Eqn. B).

R =BIB,, (2)
t = O — OR (3)

B and Bg are the matrices of coordinate basis used to define the model
and scene tensors respectively. Oy, and Og are the coordinates of the origins of
the model and scene grids in the coordinate basis of the entire scene and model
respectively. R and t are the rotation matrix and translation vector that will
align the scene data with the model data.

Next the distance between the transformed scene point and its corresponding
point in the model tensor is calculated. If this distance is below a threshold d;1,
i.e. the scene point is close to its corresponding model point, the verification
process proceeds to the next step, else the model tensor is dropped and the next
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model tensor with the highest correlation coefficient is tested. Figure 2 shows
an incorrect transformation calculated as a result of matching tensors. The two
points that were used to calculate the tensors are connected by a line. These
points are not close to their counter-parts in the other tensor, representing a
poor tensor match. Figure Blalso shows a correct transformation calculated as a
result of matching tensors. Here the two points are very close to their counter-
parts in the other tensor representing a good tensor match. In our experiments
we set dy equal to one fourth of the mesh resolution to ensure that only the
best matching tensors pass this test. If all model tensors fail this test, another
set of two points is selected from the scene and the whole process is repeated.

Fig. 2. Two views of the bunny registered using a single set of matching tensors. The
bounding box is the region where the scene and model tensors are matched. The points
used to calculate the 3-D basis are joined by a line. Left: These points are not close
to their counter-parts resulting in an inaccurate transformation. Right: The points are
close to their counter-parts in the other view, resulting in a good tensor match and an
accurate transformation.

In case the distance between the two pairs of points is less than d;, all the
scene points are transformed to the model coordinate system using the same
transformation. The transformation resulting from a single set of good matching
tensors is accurate enough to establish scene point to model point corresponden-
ces on the basis of nearest neighbour. The search for nearest neighbour starts
from the scene points that are connected directly to one of the initial points used
to define the 3-D basis. Scene points that have a model point within a distance of
dyo are turned into correspondences. We chose d;2 equal to the mesh resolution
in our experiments. d;s is selected considerably higher than d;; since the initial
transformation has been calculated based on a single set of matching tensors.
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Even a small amount of error in this transformation will cause greater misalign-
ment between the scene and the model points that are far from the origin of the
tensors. Next correspondences are found for more scene points that are directly
connected to the points for which correspondences have recently been found.
This process continues until correspondences are spread throughout the mesh
and no more correspondences can be found. If the total number of correspon-
dences at the end is more than half the total number of scene points, the initial
transformation given in Equations[2 and Bl is accepted and refined by applying
another transformation calculated from the entire set of correspondences found
during the verification process.

4 Experimental Results

We have performed our experiments on a large data set. The results of only
four objects are reported in this paper. The data set (in the form of a cloud
of points) of the first three of these objects namely, the bunny, the truck and
the robot was provided by the Robotics Institute, Carnegie Mellon University,
whereas the data of Donald Duck was acquired using the Faro Arm acquisition
system in our laboratory. The gray scale pictures of these objects are shown in
Figure Bl Three views of the first three objects were taken and our automatic
correspondence algorithm was applied to register these views. Figure E shows
the results of our experiments. Each row of Figure [ contains a different object.
The first three columns of Figure [ contain the three different views of these
objects and the fourth column contains all three views registered in a common
coordinate frame. The registered views are shown in different shades so that they
can be differentiated after alignment.

Fig. 3. Gray scale pictures of the bunny, the truck, the robot and Donald Duck used
in our experiments.

We have also tested our algorithm on data sets where each view is acquired
at different resolutions and in each case it resulted in an accurate registration.
This shows that our algorithm is independent of the resolution of the data. Un-
like spin image matching our correspondence algorithm does not require uniform
mesh resolution and is therefore robust to variations in resolution within a single
view. Figure [l shows the result of our algorithm on the Donald Duck data set
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Fig. 4. Registration results. Each row contains a separate object, namely the bunny,
the truck and the robot. The first three columns of the Figure represent three views of
the respective objects in different grey shading. The last column shows the registered
views. Notice the contribution of each view shown in different shadings in the registered
view.

that has an extremely non-uniform mesh resolution with edge lengths varying
from a minimum of 0.2mm to a maximum of 12.8mm and a standard deviation
of 2.4mm. The registration result in this case is an indication of the extent of
robustness of our algorithm to variations in the resolution of data set. Such va-
riations are commonly expected from all sensors when there are large variations
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in the orientation of the surface. Data points of a surface patch that is oblique to
the sensor will have low density as compared to a surface patch that is vertical
to the sensor.

Fig.5. Result of the algorithm applied to two views of Donald Duck having non-
uniform mesh resolution and patches of missing data. Accurate registration is obtained
in the presence of missing data. The missing data is due to the difficulty in scanning
with a contact sensor (the Faro Arm in our case).

5 Discussion and Analysis

Our tensor based representation scheme is robust to noise due to the following
reasons. The 3-D basis is defined from two points that are four mesh resolutions
apart. The origin is defined by the center of the line joining the two points
which reduces the effect of noise. The z-axis is defined as the average of the
normals of these points, hence reducing the effect of noise and variations in
surface sampling. Quantization is performed by dividing the surface area into
the bins of a 3-D grid. This significantly reduces the effect of different possible
triangulations of the surface data. The use of a statistical matching tool (in
our case the correlation coefficient) performs better in the presence of noise as
compared to linear matching techniques. All these factors ensure that the tensors
representing the same surface in two different views will give high similarity as
compared to tensors representing different surface regions.

We have taken the following measures to ensure that our algorithm is efficient
in terms of memory consumption and performance. First, to avoid the combi-
natorial explosion of pairing points, we only consider points that are four mesh
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resolutions apart with some tolerance. This restricts the possible pairs of points
to O(n) instead of O(n?). Next, to calculate the area of the mesh inside the
individual bins of the 3-D grid, instead of visiting each bin of the grid, we start
from one of the points used to define it and consider its neighbouring polygons
that are inside the grid. These polygons are visited one at a time and their area
of intersection with the bins is calculated using an efficient algorithm (Hodgman
[14)).

During the matching phase, in order to speed up the process, two tensors are
only matched if their overlap ratio Rp is more than 0.6. If a match with a high
correlation coefficient is found, it is verified by transforming only one of the scene
points, used to define the 3-D basis. If the distance of the transformed point is
less than d;; from its corresponding model point, the transformation is accepted,
otherwise it is rejected. This verification step is very fast since the rotation
matrix and the translation vector can easily be calculated from Equations 2land
Bl Choosing d;; equal to 1/4th of the mesh resolution ensures that only a good
match passes this test. This verification step almost always identifies an incorrect
tensor match and saves the algorithm from proceeding to the verification stage.
Verification of the transformation involves the search for the nearest neighbour
of every scene point, which is computationally expensive. Our algorithm does
not find a list of correspondences and pass them through a series of filtration
steps as in the case of the spin images approach [12]. Instead it selects a scene
tensor and finds its matching tensor in the model. If the match passes the above
explained verification step, it proceeds to verify the transformation derived from
Equations Bland Bl This transformation is refined and the algorithm stops. The
algorithm does not have to visit every possible correspondence and is therefore
less computationally expensive.

Once the views are registered they can easily be integrated and reconstructed
to form a single smooth and seamless surface. We have intentionally presented
our raw results after applying registration only so that the accuracy of our
algorithm could be analyzed. In the future, we intend to use this algorithm
for multi-view correspondence and registration. An extension of this work is to
achieve multi-view correspondence without any prior knowledge of the ordering
of the views.

6 Conclusion

We have presented a novel 3-D free-form object representation scheme based
on tensors. We have also presented a fully automatic correspondence and regi-
stration algorithm, based on our novel representation. Our algorithm makes no
assumption about the underlying surfaces and does not require initial estimates
of registration or the viewing angles of the object. The strength of our algorithm
lies in our robust representation scheme based on fourth order tensors. We have
presented an effective and efficient procedure for matching these tensors to esta-
blish correct correspondence between a model and a scene surface. The algorithm
has been tested on different data sets of varying mesh resolution and our results
show the effectiveness of the algorithm.
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