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Abstract. The problem of Simultaneous Localization And Mapping (SLAM) 
originally arose from the robotics community and is closely related to the 
problems of camera motion estimation and structure recovery in computer 
vision. Recent work in the vision community addressed the SLAM problem 
using either active stereo or a single passive camera. The precision of camera 
based SLAM was tested in indoor static environments. However the extended 
Kalman filters (EKF) as used in these tests are highly sensitive to outliers. For 
example, even a single mismatch of some feature point could lead to 
catastrophic collapse in both motion and structure estimates. In this paper we 
employ a robust-statistics-based condensation approach to the camera motion 
estimation problem. The condensation framework maintains multiple motion 
hypotheses when ambiguities exist. Employing robust distance functions in the 
condensation measurement stage enables the algorithm to discard a 
considerable fraction of outliers in the data. The experimental results 
demonstrate the accuracy and robustness of the proposed method. 

1   Introduction 

While the vision community struggled with the difficult problem of estimating motion 
and structure from a single camera generally moving in 3D space (see [5]), the 
robotics community independently addressed a similar estimation problem known as 
Simultaneous Localization and Mapping (SLAM) using odometery, laser range 
finders, sonars and other types of sensors together with further assumptions such as 
planar robot motion. Recently, the vision community has adopted the SLAM name 
and some of the methodologies and strategies from the robotics community. Vision 
based SLAM has been proposed in conjunction with an active stereo head and 
odometry sensing in [7], where the stereo head actively searched for old and new 
features with the aim of improving the SLAM accuracy. In [6] the more difficult issue 
of localization and mapping based on data from a single passive camera is treated. 
The camera is assumed to be calibrated and some features with known 3D locations 
are assumed present and these features impose a metric scale on the scene, enable the 
proper use of a motion model, increase the estimation accuracy and avoid drift. These 
works on vision based SLAM employ an Extended Kalman Filter (EKF) approach 
where camera motion parameters are packed together with 3D feature locations to 
form a large and tightly coupled estimation problem. The main disadvantage of this 
approach is that even a single outlier in measurement data can lead to a collapse of the 
whole estimation problem. Although there are means for excluding problematic
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feature points in tracking algorithms, it is impossible to completely avoid outliers in 
uncontrolled environments. These outliers may result from mismatches of some 
feature points which are highly likely to occur in cluttered environments, at depth 
discontinuities or when repetitive textures are present in the scene. Outliers may exist 
even if the matching algorithm performs perfectly when some objects in the scene are 
moving. In this case multiple-hypothesis estimation as naturally provided by particle 
filters is appropriate. The estimation of the stationary scene structure together with the 
camera ego-motion is the desired output under the assumption that most of the 
camera’s field of view looks at a static scene. The use of particle filters in SLAM is 
not new. Algorithms for FastSLAM [19] employed a particle filter for the motion 
estimation, but their motivation was mainly computational speed and robust 
estimation methodology was neither incorporated nor tested. In [18] a version of 
FastSLAM addressing the problem of data association between landmarks and 
measurements is presented. However, the solution to the data association problem 
provided there does not offer a solution to the problem of outliers since all landmarks 
are assumed stationary and every measurement is assumed to correctly belong to one 
of the real physical landmarks. Other works like e.g. [6] employed condensation only 
in initialization of distances of new feature points before their insertion into the EKF. 
However the robustness issue is not solved in this approach since the motion and 
mapping are still provided by the EKF. In [23] the pose of the robot was estimated by 
a condensation approach. However, here too the algorithm lacked robust statistics 
measures to effectively reject outliers in the data. Furthermore the measurements in 
this work were assumed to be provided by laser range finders and odometric sensors. 
In this work we propose a new and robust solution to the basic problem of camera 
motion estimation from known 3D feature locations, which has practical importance 
of its own. The full SLAM problem is then addressed in the context of supplementing 
this basic robust camera motion estimation approach for simultaneously providing 
additional 3D scene information. The paper is organized as follows: Section 2 
formulates the basic motion estimation problem. Section 3 presents the proposed 
framework for robust motion from structure. Section 4 discusses methods for 
incorporating the proposed framework for the solution of SLAM. Section 5 presents 
results on both synthetic data and real sequences and compares the performance to 
that of EKF based methods. 

2   Problem Formulation 

Throughout this work it is assumed that the camera is calibrated. This assumption is 
commonly made in previous works on vision based SLAM. A 3D point indexed by i 

in the camera axes coordinates, ( )TtiZtiYtiX )()()(  projects to the image point 

( )Ttiytix )()(  at frame time t via some general projection function Π  as follows: 
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The camera motion between two consecutive frames is represented by a rotation 
matrix R(t) and a translation vector V(t). Hence for a static point in the scene: 
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The rotation is represented using the exponential canonical form )(ˆ)( tetR ω=  where 

)(tω  represents the angular velocity between frames t-1 and t, and the exponent 

denotes the matrix exponential. The hat notation for some 3D vector q is defined by: 
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The matrix exponential of such skew-symmetric matrices may be computed using the 
Rodrigues’ formula: 
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Let us denote by )(tΩ  and T(t) the overall rotation and translation from some fixed 

world coordinate system to the camera axes: 
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Equation (3) describes the pose of the world relative to the camera. The camera pose 

relative to the world is given by: )(;)( )(ˆ
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Using equations (2), (3) and (3) written one sample backward: 
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Where, )(log )3(0 Aq S=  denotes the inverse of the matrix exponential of the skew 

symmetric matrix A such that qeA ˆ=  (i.e. inverting Rodrigues’ formula). Let us 
define the robust motion from structure estimation problem: given matches of 2D 
image feature points to known 3D locations, estimate the camera motion in a robust 
framework accounting for the possible presence of outliers in measurement data. 
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2.1   Dynamical Motion Model 

One can address the camera motion estimation problem with no assumptions on the 
dynamical behavior of the camera (motion model), thus using only the available 
geometric information in order to constrain the camera motion. This is equivalent to 
assuming independent and arbitrary viewpoints at every frame. In most practical 
applications though, physical constraints result in high correlation of pose between 
adjacent frames. For example, a camera mounted on a robot traveling in a room 
produces smooth motion trajectories unless the robot hits some obstacle or collapses. 
The use of a proper motion model accounts for uncertainties, improves the estimation 
accuracy, attenuates the influence of measurement noise and helps overcome 
ambiguities (which may occur if at some time instances, the measurements are not 
sufficient to uniquely constrain camera pose, see [5] and [6]). Throughout this work, 
the motion model assumes constant velocity with acceleration disturbances, as 
follows: 
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ttt

+−=

+−= ωωω
 

(5) 

If no forces act on the camera the angular and translation velocities are constant. 
Accelerations result from forces and moments which are applied on the camera, and 
these being unknown are treated as disturbances (recall that the vectors )(),( tVtω  are 
velocity terms and the time is the image frame index). 
Acceleration disturbances are modeled here probabilistically by independent white 
Gaussian noises: 
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where Vσσω and  denote expected standard deviations of the angular and linear 

acceleration disturbances. 

3   Robust Motion from Structure by Condensation 

In this section we present the proposed condensation based algorithm designed for 
robust camera 3D motion estimation. A detailed description of condensation in 
general and its application to contour tracking can be found in [12] and [13]. The state 
vector of the estimator at time t, denoted by st , includes all the motion parameters: 

( )Tt tVttTts )()()()( ωΩ=  

The state vector is of length 12. The state dynamics are generally specified in the 
condensation framework by the probability distribution function )|( 1−tt ssp . Our 

motion model is described by equations (4),(5),(6). All measurements at time t are 
denoted compactly as z(t). The camera pose is defined for each state st separately, with 
the corresponding expected projections being tested on all the visible points in the 
current frame: 
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The influence of the measurements is quantified by )|)(( tstzp . This is the 

conditional Probability Distribution Function (PDF) of measuring the identified 
features z(t) when the true parameters of motion correspond to the state st. The 
conditional PDF is calculated as a function of the geometric error, which is the 
distance denoted by id  between the projected 3D feature point location on the image 

plane and the measured image point. If the image measurement errors are statistically 
independent random variables with zero mean Gaussian PDF, then up to a 
normalizing constant: 
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Where pointsN  is the number of visible feature points and σ  is the standard deviation 

of the measurement error (about 1 pixel). Since outliers have large id  values even for 
the correct motion, the quadratic distance function may be replaced by a robust 

distance function ( )2
idρ  see e.g. [20]: 
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If some feature point is behind the camera (this occurs when its 3D coordinates 
expressed in camera axes have a negative Z value), clearly this feature should not 
have been visible and hence its contribution to the sum is set to the value:  

( ) 22lim Ldi
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=
∞→

ρ  

The influence of every feature point on the PDF is now limited by the parameter L. 
The choice of L reflects a threshold value between inliers and outliers. In order to 
understand why robustness is achieved using such distance functions, let us consider 
the simpler robust distance function, the truncated quadratic: 
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where, A is the threshold value between inliers and outliers. Using this ρ  function in 
equation (7) yields: 
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Maximizing this PDF (a maximum likelihood estimate) is equivalent to minimizing 
the sum of the two terms, the first is the sum of the quadratic distances at the inlier 
points and the second term is proportional to the number of outliers. The robust 
distance function of equation (8) is similar to the truncated quadratic, with a smoother 
transition between the inliers and outliers (see [2] and [3] for an analysis of ρ  
functions used in robust statistics and their use for image reconstruction and for the 
calculation of piecewise-smooth optical flow fields). Let us summarize the proposed 
algorithm for robust 3D motion estimation from known structure: 

Initialization- Sample N states Nns n ...1,)(
0 =  from the prior PDF of )0(ω  , V(0) and 

)0(;)0( TΩ . Initialize )(
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At every time step t=1,2, ...  : 

• Sample N states )(
1

~ n
ts −  copied from the states )(

1
n

ts −  with probabilities )(
1

n
t −π . 
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Code written in C++ implementing the algorithm of this section can be found in [25]. 
It can run in real time on a Pentium 4, 2.5GHz processor, with 30Hz sampling rate, 
1000 particles and up to 200 instantaneously visible feature points.  

4   Application to SLAM 

This section describes various possible solutions to the robust SLAM problem. 

4.1   SLAM in a Full Condensation Framework 

The most comprehensive solution to robust SLAM is the packing of all the estimated 
parameters into one large state and solve using a robust condensation framework. The 
state is composed of the motion parameters and each feature contributes three 
additional parameters for its 3D location. As stated in [7], this solution is very 
expensive computationally due to the large number of particles required to properly 
sample from the resulting high dimensional space. 



Causal Camera Motion Estimation         125 

 

4.2   SLAM in a Partially Decoupled Scheme 

The research on vision based SLAM tends to incorporate features with known 3D 
locations in the scene. The simplest method for incorporating the proposed robust 
motion from structure algorithm into SLAM is in a partially decoupled block scheme 
in which the features with known 3D locations are the input to the robust motion 
estimation block of section 3. Structure of other features in the scene can be recovered 
using the estimated motion and the image measurements. Assuming known 3D 
motion, the structure of each feature can be estimated using an EKF independently for 
each feature (similar to FastSlam in [19]). If enough features with known structure are 
available in the camera field of view at all times (few can be enough as shown in the 
experiments section), then this method can work properly. It may be practical for 
robots moving in rooms and buildings to locate known and uniquely identifiable 
features (fiducials) at known locations. When the motion estimation is robust, the 
independence of the estimators for the structure of the different features guarantees 
the robustness of the structure recovery as well. 
 
 
 
 
 
 
 

 

4.3   SLAM with Robust Motion Estimation and Triangulation 

In this section we propose a solution to the robust SLAM problem in a condensation 
framework with a state containing motion parameters only. In the measurement phase, 
features with known locations have their 3D structure projected on the image plane, 
features with unknown structure have their 3D structure reconstructed using 
triangulation (see [9] chapter 11) and the geometric error is measured by projecting 
this structure back on the image plane. The information regarding the camera pose in 
the current and previous frames is embedded in each state hypothesis of the 
condensation algorithm which together with the corresponding image measurements 
form the required information for the triangulation process. Triangulation can be 
performed from three views, where the third view is the first appearance of the 
feature. 

5   Experimental Results 

5.1   Synthetic Tests 

It has been experimentally found using synthetic tests that robustness with the 
proposed method is maintained with up to about 33% of outliers. The proposed 
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algorithm is compared with the results of the EKF approach in [5] which is run with 
the code supplied in [15]. The robust motion estimation used triangulation in three 
frames as described in section 4.3. The 3D structure was unknown to both algorithms. 
The outlier points are randomly chosen and remain fixed throughout the sequence, 
these points are given random image coordinates uniformly distributed in the image 
range (see examples in [25]). The rotation errors are compactly characterized by:  

2
ˆˆ

Frobenius

T
EstimatedTrue eeI ΩΩ 





−  

The estimation results are shown in Fig. 1. With 33% of outliers, the EKF errors are 
unacceptable while the proposed method maintains reasonable accuracy. 
 

 

Fig. 1. The translation (left) and rotation (middle) errors with no outliers in the data. Rotation 
errors with 33% of outliers (right) 

5.2   Real Sequence Example 

In this section a test consisting of 340 frames is described in detail. More sequences 
can be found in [25]. Small features (fiducials) were placed in known 3D locations 
(see Table 1) on the floor and on the walls of a room (see Fig. 2). Distances were 
measured with a tape having a resolution of 1 millimeter (0.1 cm). The fixed world 
coordinate system was chosen with its origin coinciding with a known junction on the 
floor tiles, the X and Z axes on the floor plane and parallel to the floor tiles and the Y 
axis pointing downwards (with -Y measuring the height above the floor). The balls 
are 1.4 and the circles are 1cm in diameter, the tiles are squares of 30x30cm. 

Table 1. Scene fiducial geometry 

World axes location [cm] Serial 
number 

Type Color 
X Y Z 

1 Ball Blue 30 -0.7 180 
2 Ball Green 30 -0.7 210 
3 Ball Yellow -60 -0.7 240 
4 Ball Light blue 30 -0.7 240 
5 Ball Black 0 -0.7 270 
6 Ball Red -30 -0.7 330 
7 Ball Orange 60 -0.7 360 
8 Circle Light blue -31 -100.3 388 
9 Circle Light blue 29 -120.7 492.5 
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Fig. 2. First frame of the sequence 

5.2.1   Camera Setup and Motion 
The camera was a Panasonic NV-DS60 PAL color camera with a resolution of 
720x576 pixels. The camera zoom was fixed throughout the test at the widest viewing 
angle. A wide field of view reduces the angular accuracy of a pixel, but enables the 
detection of more features (overall, [5] has experimentally found that a wide viewing 
angle is favorable for motion and structure estimation). The camera projection 
parameters at this zoom were obtained from a calibration process: 

5.2881004;5.360938 +=+= ZYyZXx  
The camera was initially placed on the floor with the optical axis pointing 
approximately in the Z direction of the world. The camera was moved backwards by 
hand on the floor plane with the final orientation approximately parallel to the initial 
(using the tile lines). The comparison between the robust and the EKF approach is 
made with both having the same motion parameters in the estimated state, the same 
measurements and the same knowledge of the 3D data of table 1. The acceleration 
disturbance parameters for both methods are: 0005.0,003.0 == Vσσω . The number 

of particles is 2000 and the robust distance function parameter is L=4 pixels. 

5.2.2   Feature Tracking 
The features were tracked with a Kanade-Lucas-Tomasi (KLT) type feature tracker 
(see [21]). The tracker was enhanced for color images by minimizing the sum of 
squared errors in all three RGB color channels (the standard KLT is formulated for 
grayscale images). The tracking windows of size 9x9 pixels were initialized in the 
first frame at the center of each ball and circle by manual selection. To avoid the fatal 
effect of interlacing, the resolution was reduced in the vertical image plane by 
sampling every two pixels (processing one camera field), the sub-pixel tracking 
results were then scaled to the full image resolution. 

5.2.3   Motion Estimation Results 
The results obtained by the proposed robust approach and the EKF approach are 
shown in Fig. 3. Most of the motion is in the Z direction. The final position was at 
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approximately Z=-60cm. The robust approach estimates the value of Z=-61cm at the 
end of the motion (there is some uncertainty regarding the exact location of the 
camera focal center), the estimated Y coordinate is almost constant and equal to the 
camera lens center height above the floor (about -7.4 cm). The trajectory estimated by 
the EKF is totally different with cmZ 80−≈  and cmY 30≈  at the end of the motion. 

The deviation from the expected final camera position is by two orders of magnitude 
higher than the expected experimental accuracy, the EKF estimation is therefore 
erroneous. After observing the tracking results of all the feature points, the points 
1,2,4,5,6,8 were manually selected as the inlier points (those which reasonably track 
the appropriate object throughout the sequence). Running again both estimators with 
only the inlier points, the proposed approach results are almost unchanged, while the 
EKF estimation changes drastically, now producing a trajectory similar to the robust 
approach (see Fig. 4). It should be noted that the EKF estimation produces a smoother 
trajectory. Image plane errors between the measurements and the projected 3D 
structure are shown in Fig. 5 (corresponding to the motion estimation of Fig. 3). The 
robust method exhibits low errors for most of the features and allows high errors for 
the outliers (this implies that algorithm can automatically separate the inliers from the 
outliers by checking the projection errors). The EKF approach on the other hand 
exhibits large errors for both inlier and outlier features. It should be noted that the 
outlier features are distracted from the true object due to its small size, noise, similar 
objects in the background and reflections from the shiny floor. It is possible to 
improve the feature tracking results by using methodologies from [14], [21], [24], but 
good feature tracking should be complemented with a robust methodology in order to 
compensate for occasional mistakes. Although the deficiencies of the EKF approach 
are mentioned in [5], [6], [7], no examples are given and no remedies are suggested in 
the camera motion estimation literature. As anonymous reviewers have suggested, we 
 

 

 

 

Fig. 3. Estimated camera 3D trajectory using the proposed approach (upper row) and the EKF 
approach (lower row) 
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Fig. 4. Estimated camera 3D trajectory using only the inlier points, the proposed approach 
(upper row) and the EKF approach (lower row) 

 

Fig. 5. Image plane errors. Robust approach showing the 6 inliers (left) and 3 outliers (middle). 
EKF approach with all 9 features (right) 

examined two methods of making the EKF solution more robust: 1. By incorporating 
measurements only from features which have a geometric error norm below a 
threshold and 2. By applying the robust distance function on the norm of the 
geometric error of each feature. Both failed to improve the results of the EKF. 
Rejection of outliers in Kalman filtering may succeed if the outliers appear scarcely or 
when their proportion is small. In our example these conditions are clearly violated. 

5.2.4   Structure Computation Example 
Structure of unknown features in the scene can be recovered using the estimated 
camera motion obtained by the robust method and the image measurements in a 
partially decoupled scheme as explained in section 4.2. As an example, consider the 
middle of the letter B appearing on the air conditioner which was tracked from frame 
0 to frame 50 (it is occluded shortly afterwards). The reconstructed location of this 
point in the world axes is: X=42.3cm; Y=-45.2cm; Z=159.6cm. The tape measure 
world axes location is: X=42.0cm; Y=-43.7cm; Z=155cm. The X, Y, Z differences 
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are: 0.3, 1.5 and 4.6 [cm] respectively. As expected, the estimation error is larger 
along the optical axis (approximately the world’s Z axis). The accuracy is reasonable, 
taking into account the short baseline of 19cm produced during the two seconds of 
tracking this feature (the overall translation from frame 0 to frame 50). As discussed 
in [5], a long baseline improves the structure estimation accuracy when the 
information is properly integrated over time. 

6   Conclusion 

A robust framework for camera motion estimation has been presented with extensions 
to the solution of the SLAM problem. The proposed algorithm can tolerate about 33% 
of outliers and it is superior in robustness relative to the commonly used EKF 
approach. It has been shown that a small number of visible features with known 3D 
structure are enough to determine the 3D pose of the camera. It may be implied from 
this work that some degree of decoupling between the motion estimation and structure 
recovery is a desirable property of SLAM algorithms which trades some accuracy loss 
for increased robustness. The robust distance function used in this work is symmetric 
for all the features with the underlying assumption that the probability of a feature to 
be an inlier or an outlier is independent of time. However, in most cases, a feature is 
expected to exhibit a more consistent behavior as an outlier or an inlier. This property 
may be exploited for further improvement of the algorithm’s robustness and accuracy. 
Also, an interesting question for future work is: How to construct fiducials which can 
be quickly and accurately identified in the scene for camera localization purposes. 
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