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Abstract. Tensor voting is an efficient algorithm for perceptual group-
ing and feature extraction, particularly for contour extraction. In this
paper two studies on tensor voting are presented. First the use of iter-
ations is investigated, and second, a new method for integrating curva-
ture information is evaluated. In opposition to other grouping methods,
tensor voting claims the advantage to be non-iterative. Although non-
iterative tensor voting methods provide good results in many cases, the
algorithm can be iterated to deal with more complex data configura-
tions. The experiments conducted demonstrate that iterations substan-
tially improve the process of feature extraction and help to overcome
limitations of the original algorithm. As a further contribution we pro-
pose a curvature improvement for tensor voting. On the contrary to the
curvature-augmented tensor voting proposed by Tang and Medioni, our
method takes advantage of the curvature calculation already performed
by the classical tensor voting and evaluates the full curvature, sign and
amplitude. Some new curvature-modified voting fields are also proposed.
Results show a lower degree of artifacts, smoother curves, a high toler-
ance to scale parameter changes and also more noise-robustness.

1 Introduction

Medioni and coworkers developed tensor voting as an efficient method for con-
tour extraction and grouping. The method, supported by the Gestalt psychology,
is based on tensor representation of image features and non-linear voting, as de-
scribed in [2]. See also [9] for a comparison with other existing methods. Tensor
voting is a non-iterative procedure, in the sense that the original scheme im-
plements only 2 steps of voting, claiming that no more iterations are needed.
In opposition, other methods for perceptual grouping [43[1] refine the results
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by iterative feedforward-feedback loops. Therefore, the aim of this study is to
investigate how an incremented number of iterations can improve the results
of tensor voting. Some basic examples are analyzed and an extraction quality
measurement is proposed. The later allows to perform a statistical study on the
influence of iterations in a simple case.

A curvature improvement has been proposed by Tang and Medioni [7]. They
compute the sign of curvature and use it for modifying the voting fields. We
propose a more sophisticated calculation of the curvature information with a
low computational cost. Instead of the sign of curvature, the proposed method
evaluates the full curvature using part of the calculations previously performed
by the tensor voting. We adopt a curvature compatibility approach that was
described by Parent and Zucker [f]. A statistical evaluation is presented and the
methods are finally tested with more complex data in presence of noise.

Section 2 briefly introduces the tensor voting method. Section 3 presents a
study on the usefulness of iterations for tensor voting and the section 4 describes
some improvements that can be achieved when both curvature information and
iterations are used. Some concluding remarks are drawn in section 5.

2 A Brief Introduction to Tensor Voting

The classical algorithm will not be fully described in detail here and only a brief
description is presented in order to stress the new contributions of this paper.
For a more in depth study the reader can refer to [2I7]. Also, it is necessary to
remark that the present work is only restricted to still 2D images, but it could
be extended to N-dimensional features, like volumetric data or motion [8I5].

A local description of the curves at each point of the image can be encoded by
a symmetric positive 2x2 tensor. Tensors can be diagonalized, their eigenvalues
are denoted A1, Ay with Ay > Ao > 0 and corresponding eigenvectors are denoted
by e1, es. Tensors can be decomposed as follows:

T = ()\1 — )\2)616%1 + )\2] (1)

where I is the identity matrix. The first term is called the stick component, where
e is an evaluation of the tangent to the curve. The stick saliency Ay — Ao gives a
confidence measure for the presence of a curve. The second term is called the ball
component, and its saliency Ao gives a confidence measure to have a junction.
The classical tensor voting algorithm performs two voting steps in which
each tensor propagates to its neighborhood. Stick tensors propagate mostly in
the direction of e;. The region of propagation is defined by the stick voting field
which decay in function of the distance and curvature (see Eq. 3 and Fig. 2lh).
Ball tensors propagate in all directions and decay with the distance. After all
tensors are propagated, all contributions are summed up to define new tensors
that will be used for the next step. That summation can be considered as an
averaging or a “voting”. The first voting step is referred as “sparse vote” because
the vote is performed only on points where tensors are not null. The last voting
step is called “dense vote” because the vote is accomplished on every point. After



160 S. Fischer et al.

TEIEOT

lrndcializatlon

_.¢

spATYse voLe curvaturea
{modified fields) | ®8timatlan

—

aanse vote
(modified fields}

|

Ipature cxlracilon

n iteraticns

Fig.1. Classical tensor voting consists of four steps. (1) Tensor initialization, (2)
sparse voting, (3) dense voting, and (4) feature extraction. The new contributions are
depicted with boldface characters, which describe iterations of the sparse voting process
and curvature calculations during the sparse vote stage, modifying the voting fields by
incorporating the calculated curvature.

all the voting steps are completed, curves are extracted as local maximum of stick
saliency along the normal direction to stick components. Note that thresholds
are necessary to eliminate low-saliency local maxima. These thresholds are held
constant for each of the following experiments. Fig. [I] summarizes the different
steps of the algorithm showing with boldface characters the new contributions
proposed: an iterative sparse voting mechanism and a curvature calculation for
modifying the voting fields.

3 Iterated Tensor Voting

3.1 Example

Tensor voting is a very efficient technique for grouping data-points that are
separated by almost the same distance. A free parameter o (the scale factor,
see Eq. B]) has to be adjusted to the inter-distance between points. If o is miss-
adjusted, performance results strongly decrease: if o is too small points will not
be grouped, if ¢ is too big the grouping is less selective.

Fig. Bla shows a simple example with two sets of points: first a three by
three array of points separated by 11 pixels vertically and 13 pixels horizontally.
Because the vertical distance is smaller, following Gestalt psychology rules, these
points have to be grouped vertically. Secondly, a set of three points aligned in
diagonal and separated by 42 pixel gaps. Because the gaps are different in both
sets of points it is not possible to adjust o for extracting both structures correctly.
As it is shown in Fig. B¢, if o is small, i.e. around 5, only the vertical array
is grouped. If o is bigger than 15, only the diagonal line is correctly grouped
(Fig. 2li). Between these values (from o =7 to 13, Fig. Ble and g) none of these
sets of points are accurately grouped.
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Fig. 2. Example showing the tensor voting results for different values of the scale
factor o and of the number of iterations. a. Data points belong to two sets: three
points aligned in diagonal and an array which has to be grouped in vertically lines. b.
Contours of the voting field for o = 5 are drawn at 50% (solid line) and 5% (dash-dot
line) of the maximum value (see Eq. (3)) for voting fields description). c. Extraction
results with the classical tensor voting algorithm (two voting steps) and o = 5: array
structure is accurately extracted, but the scale factor is too small to group diagonal
points. d. and f. Voting fields with ¢ = 9 and o = 12, respectively. e. and g. Contours
extracted respectively with ¢ = 9 and o = 12, by the non-iterative tensor voting. In
both cases algorithm fails to find both array and diagonal points structures. The scale
factor o is too big for the array and too small for the diagonal points. h. and j. Voting
field with ¢ = 15. i. With non-iterative tensor voting and o = 15, diagonal points are
correctly grouped, but not array points. k. With o = 15 and 20 iterations the structure
is accurately extracted, both array and diagonal line are correctly grouped.

Iterations are implemented on the sparse voting stage. For n iterations, n —1
sparse votes and one dense vote are required, as shown Fig. [l An increased
number of iterations can refine the results until the correct structure is extracted.
Fig.[@k shows the results with o = 15 and 20 iterations. Both array and diagonal
line structures are now simultaneously extracted what non-iterative algorithm
was not able to do. Note that a normalization stage is applied after each iteration
to keep the sum of tensor eigenvalues constant.
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Fig. 3. Systematic evaluation of the influence of iterations using a three by three array
of points. a. Original array of points separated by Az, Ay (parameters are the same
in all insets: Az = 4, Ay = 9 and o = 10). b. Contour extraction with the non-
iterative tensor voting fails: central points are not grouped, lateral points are grouped
but not in strictly vertical lines, moreover there are some artifacts (Q=0.40). c. The
structure is well extracted after 10 iterations of voting: points are grouped in vertical
lines (Q=2.38).

3.2 Statistics on the Influence of Iterations

A 3x3 array of points, shown in Fig.[Bla, is used to evaluate the effect of iterations
on tensor voting. Vertical and horizontal distances between points are denoted
Ax and Ay respectively. In the following, Az will be chosen smaller than Ay.
In such case points have to be grouped vertically (on the contrary if Az > Ay
points would have to be grouped horizontally). Taking into account that points
have to be grouped vertically, a measure of how good tensor orientation is can
be represented by:

Q= togio |+ 3 (1Ti(;7”) 2)
9 K3

i=1,...,

where i indexes the 9 points of the array. T; is the tensor of the point i, 5; is the
sum of eigenvalues of T; and T;(1, 1) the vertical component of the tensor T;.

As vertical lines have to be extracted, tensors are correctly oriented if they
Si

have a form close to T; = S; {O 0]. In such case > (1— ) is close to

zero, providing a high value for Q). Thus, ) can be considered as an extraction
quality measurement for the described experiment. When ) < 1 tensors are
miss-oriented and extraction can be considered as failed. On the contrary Q) > 2
indicates tensors are well orientated and the structure is correctly extracted.

3.3 Results

Fig. @ presents results for different parameters Az, Ay and n (number of iter-
ations). For all cases the scale factor o is fixed to 10. Again, please note that
in this study we are only considering cases where Az < Ay (which should yield
vertical grouping following Gestalt rules of proximity and good continuation).
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Fig. 4. Extraction quality as a function of array parameters Az and Ay for the grid
example of Fig. . The number of iterations n is indicated by different gray shades
in the bars (two iterations bar corresponds to the classical algorithm with two voting
steps). ¢ = 10 is held constant for the entire experiment. Only cases with Az < Ay
are shown here. a. With a fixed Az =4 and 5 < Ay < 13. If Ay < o, 0 is too large in
comparison to the features and the extraction fails even if more iterations are deployed.
If 9 < Ay < 11 the structure is extracted using several iterations (results start from
failed (Q < 1) when using the non-iterative algorithm up to accurate (Q > 2) when
more iterations are deployed). Only if Ay > 12 the non-iterative algorithm is able to
extract the desired information. b. Az = 8 and 9 < Ay < 15. ¢. Az = 13 and 14 <
Ay < 19. In difficult cases like when Az ~ Ay or Ay ~ o several iterations are needed
for extracting accurately the structure. d. Az = 25 and 26 < Ay < 31. Although o is
too small in comparison to the features, an accurate extraction is obtained due to the
infinite Gaussian extension of the propagation fields.

Extraction is accurate for any number of iterations if o corresponds to the
optimal scale for the investigated stimuli and if there is no competition be-
tween vertical and horizontal grouping, that is, if 0 < Ay and Az < Ay (see
Fig.[dla,b,c,d at their rightmost parts).
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If Ay < o it is impossible to extract the structure even if more iterations
are deployed (see Fig. Hla left part), the scale factor is indeed too large to be
selective enough.

If Ay ~ o the application of the classical algorithm fails to extract the curves.
On the contrary, iterations allow tensor voting obtaining the correct structure as
it can be observed in Fig.[4.a center part and Fig.[4.b left part. A similar situation
is observed if Ax ~ Ay and Ax, Ay are not much bigger than o. Iterated tensor
voting allow to extract the structure where the classical algorithm fails (see
Fig. @l.c left part).

In conclusion, only if the features to be extracted are simple and they do not
appear in competition, the non-iterative algorithm would suffice for correctly
extracting image features. For more complicated cases, when some competition
between orientations is present or when the scale factor o is not precisely ad-
justed, more than two iterations are required. Moreover, it has been seen that
in almost all cases iterations do not impair the quality of the results and on the
contrary they allow to refine the final structures. In all, the use of iterations
can help to overcome the limitations of the non-iterative method, improving the
feature extraction results.

4 Curvature Improvement

4.1 Method

The proposed curvature improvement introduces a curvature calculation and
modified stick voting fields. The curvature is evaluated in each voter point by
averaging over all receiver points the curvature calculation p already computed
in the classical tensor voting. In the classical tensor voting, a voter A votes on
a receiver B with an amplitude described by the stick voting field equation:

V(A, B) = exp (—S(A B)* —;26 P4, B)Q) (3)
with )
(4, B) = 2000 @

where s(A, B) and p(A, B) are respectively the length and the curvature of the

circular arc which is tangent to e; (A) in point A and goes through point B

(see Fig.[Bla). d is the Euclidean distance between both points A and B, 0 is the

—

angle between vectors e (A) and AB. o -the scale factor- and ¢ are constants.

Fig. @lb,d,f,h shows the contours of such voting fields for different values of o.
The curvature will be evaluated in each voter point A. To permit inflexion

points and changes of curvature, the curvature is calculated separately in both

JEEN
half planes Py and P_ defined respectively by P, = {B, (e1 (4), AB) > 0} and

il
P_ = {B,(e; (A), AB) < 0}. The weighted average over each half plane gives
~i(A) (where i = + or —), which is a curvature evaluation at the point A:
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S per (m(B) = \a(B)) V(A, B) p(A, B)
2 ((B) = a(B) V(A, B)

where A1 (B), \2(B) are the eigenvalues of the tensor B. The weighted average is
very similar to the “voting” used in tensor voting: the same weighting functions
composed by the voting fields V' and the stick saliency A\; — Ay are used.

The v; determined at one iteration, can then be used in the next iteration
for modifying the stick voting fields. The following equation extends Eq. Bt

Yi(A) =

()

° — 2
V(A, B) = exp <S(A,B) +c (p(gva) i(A)) > s e
A= Voter

] B=Receiver | e,
|'=1_

: vote

direction

‘\—A 0 vater d?;ction """"

Fig. 5. a. Tensor voting fields are build calculating the distance d, the angle 60, the arc
longitude s and the curvature p between the voter A oriented by its first eigenvector
e1 and the receiver B. In the curvature improvement the curvature is evaluated in the
voter A by averaging p over all receivers. b. Classical voting field without curvature.
Contours are drawn at 50% and 5% of the maximum value, o = 15 for all voting fields of

the figure. c. Symmetric curved voting field with curvatures v© = v~ = .06. d. Curved
voting field with different curvature in both half planes, v* = .09 and v~ = .03. e.
Curved voting field with inflexion, v = .06 and v~ = —.06.

Some examples of such curvature-modified voting fields are shown
Fig. Blc,d,e. See in comparison the former contours Fig. Blb. In points where
the ball component has a significant level in comparison to the stick component,
curvatures have to be considered as zero because no reliable curvature calcula-
tion is possible if curve orientation is itself not reliable. Therefore curved voting
fields are employed only where tensor orientation has high confidence (the curved
voting fields are only used under the condition ﬁ > 10).

Remarkably the method follows the ° votmg methodology. Curvature is
found by averaging. Moreover it uses the same voting fields V' as tensor vot-
ing. It can then be hoped to conserve the good properties of the tensor voting,
like the robustness to noise. The curvature improvement does not entail an im-
portant additional computational cost in comparison to the classical method,
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while it uses the same kind of operations as the tensor voting and reuses calcu-
lations already done, i.e. in the curvature calculation of Eq. [5l all variables Ay,
A2, V and p are already computed by the classical tensor voting.

Note also that an increased number of iterations is necessary to refine the
results. The number of iterations can be considered as an additional parameter
of the algorithm. A procedure could also be implemented for stopping the iter-
ations when the results do not change much from one iteration to the following
one. For all examples presented here a fixed number of iterations is used. 10 it-
erations have be seen to be sufficient unless data structure presents some special
ambiguity.

In the following, the curvature improvement will be compared with the non-
iterative tensor voting and iterative tensor voting without curvature improve-
ment. Results need to be compared with Tang and Medioni’s method taking
into account the sign of curvature [7], although this was out of the scope of the
present study.

4.2 Statistical Study

Fig.[B.a shows an image composed by sparse points located on the edges of an
ellipse. The distance between points vary between 6 to 12 pixels. This example
is used for comparing the three versions of the algorithm. For different values of
the scale factor o, we count the number of points erroneously extracted outside
the ellipse contour, tolerating a deviation of two pixels around the ideal ellipse.
Results are presented in Fig. [Blb-e.

All versions of the algorithm require a o value to be higher than a minimum
value (o > 7 in the present case) for extracting the contour of the ellipse. With
a smaller value of o, points are not grouped together. On the other hand, o
needs to be small for avoiding artifacts, i.e. the number of misplaced points
increases strongly for tensor voting without curvature information for o > 10,
and for o > 34 if the curvature improvement is considered. Classical tensor
voting adequately extracts the contours, although with artifacts, for ¢ between
7 and 10. Iterations have few influence on the results. In comparison curvature
improvement extracts adequately the ellipse over a large range of o values, i.e.
between 7 to 34. Moreover it does not produce any artifacts for o between 7 and
21 and yields smoother slopes.

4.3 Hand-Written Text Example

Fig. [0 shows another example of contour extraction with the three versions
of the algorithm: non-iterative, iterative with 10 iterations and iterative with
the curvature improvement (with also 10 iterations). The first image “Cyan”
(Fig.[Ma) is composed of sparse points along handwritten characters. The second
one (Fig.[[b) is the same image “Cyan” with 20% of noise (i.e. every fifth data
point is noise). Same parameters are used for each method. After tensor voting
is applied the contours of the letters are extracted. Results show tensor voting
with 10 iterations (Fig. [d.e) reduces the artifacts and closes the curves better
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Fig. 6. Comparison between the three methods. a. The input image is composed by
a sparse set of dots dispersed along the edges of an ellipse. In insets a., b. and c. all
parameters are the same and o = 8. b. and c. Extraction results with, respectively,
the non-iterative algorithm and 10 iterations of tensor voting. The ellipse is adequately
extracted but artifacts can be observed, moreover slopes are not smooth. Both methods
provide similar results. d. With the curvature improvement and 10 iterations, the
ellipse is extracted without artifacts and with smooth curves. e. Results for o varying
between 7 and 27 are presented. The number of points erroneously extracted, that
is extracted out of the ellipse are plotted for each method. Tensor voting without
curvature information extract the ellipse, although always with artifacts, for o between
7 and 10. Curvature improvement extracts it without artifacts and tolerates a larger
range of o (from 7 to 21).

than non-iterative tensor voting (Fig. [c). With the curvature improvement
(Fig. [[g) extracted contours of the curves have even less artifacts and are much
smoother. Comparison of the results with the noisy image (Fig.[7.d,f;h) shows
that curvature improvement does not impair the quality but even improves it,
e.g. contour continuity is better preserved.

For regions with straight segments and junctions both curvature improvement

and iterative tensor voting behaves similarly. Therefore, curvature improvement
does not impair the results for such situations. As a consequence the curvature
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Fig. 7. A hand written example. a. The test image “Cyan” is a 128x304 pixel image
composed by points dispersed along hand-written letters. For better visualization points
are magnified. b. The second test image is the same image “Cyan” with 20% noise.
Parameters are the same for all experiments (o = 15). ¢ and d. Extraction results of
respectively the image “Cyan” and the noisy image version with non-iterative tensor
voting. In both cases the algorithm fails to close the curves and yields high level of
artifacts. e and f. Extraction results of “Cyan” images with 10 iterations. Curves are
better closed and the level of artifacts is lower than with non-iterative tensor voting. g
and h. Extraction results with the curvature improvement and 10 iterations. The text
is accurately extracted, with less artifacts and smoother slopes. Results resist slightly
better to noise than without curvature improvement. It is remarkable that the curve
continuity of the letters C, Y and N is preserved.
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improvement can be used for any kind of images. Remarkably, curvature im-
provement accurately extracts the structure of the example Fig. Pla using the
same parameters (o = 15 and 20 iterations).

5 Conclusion

This paper demonstrated that iterations are useful for tensor voting, particularly
for extracting correct contours in difficult situations like feature competition or
scale parameter misadjustment. In almost all cases iterations do not impair the
quality of the results and on the contrary they allow refining and improving the
final structures. The curvature improvement provides better results for curved
features as it reduces the level of artifacts and smoothes curves, besides the fact
that it also increases the robustness of the method to scale parameter misad-
justment and noise.
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