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Abstract. We introduce a novel approach to modeling the dynamics
of human facial motion induced by the action of speech for the purpose
of synthesis. We represent the trajectories of a number of salient fea-
tures on the human face as the output of a dynamical system made up
of two subsystems, one driven by the deterministic speech input, and a
second driven by an unknown stochastic input. Inference of the model
(learning) is performed automatically and involves an extension of in-
dependent component analysis to time-depentend data. Using a shape-
texture decompositional representation for the face, we generate facial
image sequences reconstructed from synthesized feature point positions.

1 Introduction

Human facial motion carries rich information that we use to interact: We con-
stantly read cues from people’s faces, conveying a wide range of useful informa-
tion often altering our state. While facial motion in isolation is quite interesting,
the coupling with the action of speech adds yet another dimension to the prob-
lem. Our goal is to understand the dynamic behavior of facial motion as it relates
to speech, and infer a model that can be used to generate synthetic sequences of
images driven by speech. A great challenge in this task is the evolutionary acuity
of human perception to details of the face and facial motion. For a facial model
to meet this high standard, we must devise models that can capture subtleties.
While there has been remarkable progress in the area of speech content recogni-
tion and general facial motion based on speech utterances [10,2,3], there remains
an open question of capturing dynamic complexities and interactions between
facial motion and speech signals. Such subtleties are encoded largely in the dy-
namics of facial motion as opposed to static pose geometry and photometry.

The problem is simple to state. We want to collect motion-capture data1 for
an individual, and the associated speech waveform, and from these data build
a model that can be used to generate novel synthetic facial motions associated
with novel speech segments, for instance for an animated character. However,
we want to be able to do this while retaining the “distinctive character” of the
1 In particular, trajectories of a collection of feature point positions in space.
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individual person in the training set. For instance, if we observe Mr. Thompkins
says “happy birthday,” our long term goal is to develop a model that can be
used to synthesize novel facial motions that “looks” like Mr. Thompkins’.

The rationale of our approach is based on the fact that facial motion is the
result of word utterances combined with physical characteristics of the face that
are peculiar to each individual.

2 Relation to Previous Work and Contribution of This
Paper

The topic of speech-driven facial animation has been the subject of considerable
attention recently. A scheme for modifying emotional attributes of facial mo-
tion, such as happiness or anger, associated with utterances is discussed in [7].
In [10] Ezzat et al. propose a variant of the multidimensional morphable model
as a representation for images, particularly effective in describing a set of images
with local variations in shape and appearance. He uses this representation to
develop a statistical interpolation technique, in the space of morphable models,
to interpolate novel images corresponding to novel speech segments. In [2] Brand
introduces the idea of driving the facial model with a related control signal de-
rived from the speech signal. He introduces a modified hidden Markov model for
identification of non-stationary piecewise linear systems. He uses this model to
approximate the nonlinear behavior of the face via “quasi-linear” submanifolds.
In [3], Bregler et. al propose an image-based method called “Video Rewrite.”
This method relies on constructing audiovisual basic building blocks called tri-
phones. It uses a large amount of training data to construct a basis for the
entire utterance space. By identifying the correct audio-visual building blocks
corresponding to a novel speech utterance and concatenating them it forms im-
age sequences corresponding to novel speech segments. Unlike the past work on
constructing generic facial motion synthesizers, we are interested in utilizing the
information in speech to capture and drive a facial motion that is realistic and
closer to the speaker’s personal dynamic character. Our goal is not to demon-
strate a model that spans the entire utterance space, but at this stage to develop
the concept and demonstrate its efficacy using only a small set of samples.

Our model decouples the deterministic dynamics driven by speech from the
stochastic dynamics driven by samples from a stochastic process with unknown
and non-Gaussian distribution. We show how to perform inference of this model,
which involves independent component analysis (ICA) [8] applied to a dynamic
context. We apply our inference algorithm to a model of a face based on de-
coupling transformations of the domain of the image from transformation of
the intensity values, akin to so-called “active appearance” or “linear morphable
models” [9,10,1]. However, unlike traditional active appearance models, we do
not require manual selection and registration of interest points, but instead per-
form the learning automatically. Unlike [17], we do not use a pre-defined grid,
but instead we use a geometric structure defined by salient regions of the images
where geometric deformations are well-defined.
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3 Modeling

In this section we describe a model that is motivated by the considerations
above. We first describe the decoupling of appearance and motion, and then the
decoupling of speech-driven motion, and noise-driven motion.

3.1 Modeling the Face: Shape and Radiance Decomposition

We make the assumption that a face is a smooth parameterized surface S :
Ω ⊂ R

2 → R
3, supporting a diffuse albedo ρ : Ω × R → R

+, moving and
deforming under the action of a group 2 g(t), viewed under perspective projection
π : R

3 → R
2, so that a given point p = S(x) generates an image I at pixel w(x, t)

at time t according to

I(w(x, t), t) = ρ(x, t) ∀ x ∈ Ω (1)

where we have defined the “domain warping” w(x, t) .= π(g(t)S(x)). Without loss
of generality we can assume that Ω corresponds to the image-plane at time t = 0.
Note that the actual shape of the surface, i.e. the quotient S/g(t), cannot be
untangled from the deformation g(t) in w(x, t), and from the deformed radiance
ρ(x, t) and therefore the “responsibility” of modeling changes in radiance due
to shape deformations is shared between the domain warping w and the range
transformations ρ. Estimating the two infinite-dimensional functions w : R

2 ×
R → R

2 and ρ : Ω × R → R
+ in the case of a general scene is very complex,

and falls into the general domain of deformable templates [13]. Here, we do not
have a general scene, but various deformations of the same face due to speech.
Therefore, in the spirit of active appearance models [9], we assume that local
variability of the domain can be modeled as linear transformations of a number
of basis elements:

w(x, t) = w0(x) + W (x)y(t); x ∈ Ω, t = 1, 2, . . . (2)

where W = [W1, . . . , Wkw
]; Wi : Ω → R

2 are basis elements, y(t) ∈ R
kw ∀ t

In “active appearance models”, one assumes that equation (2) is satisfied not
on all of Ω, but only at a fixed number of known (often manually selected
and registered) “landmark” points x1, . . . , xl. Then W (xi), i = 1, . . . , l can be
estimated using principal component analysis (PCA). In [17], xi are fixed points
on a pre-defined grid, so no manual selection of landmarks is necessary. However,
whether w(x, t) in (1) can be inferred at a point x depends on the values of I in a
neighborhood of w(x, t). If x falls in a region of constant radiance, w(x, t) is not
well defined, which can result in unlikely domain deformations being estimated.

In this work, we adopt an intermediate approach, where we evaluate (2)
only at photometrically distinct points, modeling the deformation of all and
only the points where the deformation can be inferred. However, we rely on
2 The deformation here is represented by a complex and possibly infinite-dimensional

group. We will use a simpler model, which we will elucidate shortly.
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the fact that we have a sequence of adjacent views of the image from video to
automatically detect and track such photometrically distinct points and maintain
point registration. We use a standard point tracker (our implementation of Lucas
and Kanade’s [20]) to track and obtain trajectories of a number of points on the
face and thus the associated shape parameters y(t). The process, including facial
image synthesis, is further elaborated in section 5.

In the next subsection we discuss how to model the temporal evolution of
these parameters. If the number of available points is small, we could bypass the
dimensionality reduction of the deformation w and simply model the trajectory
of all the landmark points {x1(t), . . . , xl(t) ∈ R

2}t=1,...,T . In either case, we call
the “state” of interest y(t), the latter case corresponding to W = I.

3.2 Modeling the Dynamics of the Face

In this section we model the temporal evolution of {y(t)}t=1,...,T . As we men-
tioned in the introduction, such evolution compounds the effect of deterministic
speech and a more ephemeral input that is not associated with speech charac-
teristics. Here we are interested in decoupling these effects.

One possible way is to assume that y(t) is in fact the sum of two components
y(t) = yd(t) + ys(t), the first generated by a, say, linear system driven by the
input sound channels u(t), while the second, ys(t), generated through a linear
system driven by an IID random process e(t) with unknown distribution pe,
independent of u(t). This kind of philosophy has been introduced in the area of
subspace identification in [18] and further elaborated upon in [4,6,5].

Assuming that the dynamics of the “deterministic” and “stochastic” models
are disjoint, one can give a state space description in decoupled form as follows.
We introduce hidden “states” ξ, that we partition into two components: ξ =
[ξT

d , ξT
s ]T , a “deterministic” one ξd that receives input from the sound channels

u(t), and a “stochastic” one ξs that receives input from an IID random process
e(t) with unknown distribution pe.

While we have reasons to believe that the dynamics of facial motion can be
faithfully modeled with a linear model (faces usually do not exhibit nonlinear
behaviors such as limit cycles, bifurcations, or chaos, at least for the majority
of individuals), in order to model the subtleties associated to each individual we
allow the stochastic input to be drawn from a non-Gaussian distribution pe. The
model we consider, therefore, is in the following decoupled form[

ξd(t + 1)
ξs(t + 1)

]
=
[

Ad 0
0 As

] [
ξd(t)
ξs(t)

]
+
[

Bd

0

]
u(t) +

[
0

Bs

]
e(t)

y(t) =
[
Cd Cs

] [ ξd(t)
ξs(t)

]
+ Ddu(t) + e(t)

(3)

where e(t) IID∼ pe; We assume that the model above is stable and has minimum
phase (|λ(As)| < 1, |λ(Ad)| < 1, |λ(As − BsCs)| < 1, where λ denotes the
largest eigenvalue), and that e(t) is a (strict sense) white process 3. Further-
3 I.e. e(t) and e(s) are indepedent for t �= s
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more, we assume that there exists a (square invertible) matrix D so that the
components of

v(t) .= D−1e(t) = [v1(t), . . . , vkw
(t)]T (4)

are independent with density function qi(·)4. In the next section we argue that
there are procedures to chose the dimension of the states ξd, ξs, but we shall
not discuss this point in the paper. Note that we assume that the dynamics are
decoupled (off-diagonal blocks of the transition matrix are zero). This is in the
spirit of the so-called Box-Jenkins model, well known in the system identification
literature [16]. The goal of the inference process (learning) is, given a sequence
of measured trajectories {y(t)}t=1,...,T , to estimate the states {ξd(t), ξs(t)}, the
model parameters Ad, As, Bd, Bs, Cs, Cd, Dd, the mixing matrix D and the
non-Gaussian density of the stochastic input q. While the first part (identification
of a model in decoupled form) has been studied in the system identification
literature [18,6,5], dealing with (and estimating) a non-Gaussian driving noise is
a non-standard task, which we discuss in the next section.

Once the model is identified, we can generate synthetic sequences by feeding
the model with a speech input, and samples from the density q, as we explain
in section 5.

4 Inference

In this section we discuss how to identify the model parameters and estimate
the states of the model (3). Despite the linear structure, the model does not
fall in the standard form suitable for applying off-the-shelf system identification
algorithms, due to (a) the decoupled structure of the input-to-state relationship
and (b) the non-Gaussian nature of the stochastic input. We will address these
problems separately in the following subsections.

4.1 Combined Identification of the Model

In this section we concentrate on the identification of the model (3), following
the approach proposed in [18,6,5]. Under a technical assumptions called “ab-
sence of feedback” (see Granger [12]) the stochastic processes yd and ys, called
the deterministic and the stochastic component of y, defined by the conditional
expectations

yd(t)
.= E[y(t) | u(t), u(t − 1), ..., u(t − k), ...] ys(t)

.= y(t) − yd(t) (5)

are uncorrelated at all times [18]. It follows that y(t) admits an orthogonal
decomposition as the sum of its deterministic and stochastic components

y(t) = yd(t) + ys(t) E[ys(t)yd(τ)T ] = 0 for all t, τ.

4 Note that, if y(t) is a full-rank purely non-deterministic process e(t) has the same
dimension kw as y(t).
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Note that yd is actually a causal linear functional of the input process, and is
hence representable as the output of a causal linear time-invariant filter driven
only by the input signal u. Consequently, ys(t) is also the ”causal estimation”
error of y(t) based on the past and present inputs up to time t. Its input-
output relation has the familiar form y = F (z)u + G(z)v with “stochastic” and
“deterministic” transfer functions F (z) = Cd(zI − Ad)−1Bd + Dd and G(z) =
I + Cs(zI − As)−1Bs.

Up to this point there is no guarantee that combining a state space realization
of F (z)

ξd(t + 1) = Adξd(t) + Bdu(t)
yd(t) = Cdξd(t) + Ddu(t) (6)

and one of G(z)
ξs(t + 1) = Asξs(t) + Bse(t)

ys(t) = Csξs(t) + e(t) (7)

yielding (3) results in a minimal model (i.e. with the minimum number of state
components).

In most practical cases the stochastic and deterministic dynamics will be
completely different, and hence (3) will be minimal.

A subspace identification procedure based on this decomposition has been
introduced in [18] and later refined and analyzed in a series of papers by the
same authors [4,6,5] and can be summarized as follows. Using available data
{y(t), u(t), t = 1, .., T}:

1. Estimate the deterministic component ŷd(t)
.= E[y(t) | u(1), u(2), ..., u(T )].

(see [18,4,6,5] for details)
2. Use a standard “deterministic” subspace identification technique to identify

the system parameters Ad, Bd, Cd, Dd. (see [6,5] for details)
3. Estimate the stochastic component ŷs(t)

.= y(t) − ŷd(t)
4. Prefilter the stochastic component with a filter constructed from the identi-

fied deterministic system to compensate for a certain distortion due to the
fact that only finite data are available (see [4] for details).

5. Use the prefiltered data as an input to the algorithm in [21] to estimate the
stochastic parameters As, Cs, Bs.

The subspace procedures used in step (2.) and (5.) provide also order esti-
mation techniques which allow to suitable choose the dimension of the states ξd

and ξs, we refer to [4] for details.

4.2 Isolating the Stochastic Part: Revisiting “Dynamic ICA”

From the identification step we obtain a minimum-phase realization of the
stochastic component of y(t):

ξs(t + 1) = Asξs(t) + BsDv(t)
ys(t) = Csξs(t) + Dv(t). (8)

where v(t), defined in equation (4), has independent components.
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A predictor ŷs(t|t − 1) for the system output at time t is a (in general
non-linear) function of the data up to time t − 1, ŷs(t|t − 1) = f(ys(t −
1), . . . , ys(t − k), . . .) that is designed to approximate the output ys(t) accord-
ing to some criterion. The optimal predictor, in the sense for instance of mini-
mum variance of the estimation error ys(t) − ŷs(t|t − 1), is the conditional mean
ŷs(t|t − 1) = E[ys(t)|ys(t − 1), .., ys(t − k), ..]. Under our assumptions (i.e. v(t)
strictly white and (As − BsCs) stable) the predictor is just given by the inverse
system of (8), which is named the “innovation model”. The process e(t) = Dv(t)
is the “innovation process”, i.e. the (optimal) one-step-ahead prediction error:

ξ̂s(t + 1) = (As − BsCs)ξ̂s(t) + Bsys(t)
e(t) = ys(t) − Csξ̂s(t) = ys(t) − ŷs(t|t − 1).

(9)

At the same time, we want to enforce the constraint that the components of
v(t) = D−1e(t), are independent; this can be done by minimizing the relative
entropy (Kullback-Liebler divergence) between the joint density of v(t) and the
product of the densities qi(·) of its components vi(t)

.= D−1
.i e(t):

min
D,qi

K

(
| det(D)|pe(y(t) − ŷ(t|t − 1))

∣∣∣
∣∣∣

kw∏
i=1

qi(D−1
.i e(t))

)
(10)

where D−1
.i denotes the i−th row of the matrix D−1 and K(p||q) .=

∫
log p

q dP (x).
This problem can be considered a dynamic extension of independent component
analysis (ICA), a problem that has been addressed both in the literature of blind
deconvolution using higher-order statistics [11] and in the learning literature [14,
22]. In particular, [11] estimates the parameters of a non-minimum phase system
via blind deconvolution based on high-order cumulants.

Our assumption that the innovation are temporally strictly white allows to
solve the dynamic ICA problem rather easily. Of course a more general model
would not assume that the optimal prediction is linear or alternatively that
the (linear) one step prediction errors are independent. The recent work [22]
addresses the problem above, both for the case of non-linear models and for
linear models, by using gradient descent algorithms. In the case of minimum-
phase models as in (8), this approach do not fully exploit the structure of the
(linear) problem. Therefore such a gradient procedure, when successful, cannot
do better than a simple algorithm [19] that consists in a closed-form algorithm
for identifying the model parameters, followed by a static ICA to whiten the
components of the input. A similar approach has been advocated in [14].

In fact, since the system is assumed to be minimum phase and the inputs
e(t) temporally strictly white, as we have argued above, the optimal predictor
is linear and depends only on second order properties on the process ys(t). The
parameters As, Cs, Bs, can be recovered using linear system identification tech-
niques. Subspace identification procedures as the ones previously described solve
this problem and are particularly suited to work with high dimensional data (i.e.
kw large).

After the innovation model has been estimated, standard (static) ICA can
be used to estimate a mixing matrix D and the density function q(·) from the
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residuals e(t) = ys(t) − ŷs(t|t − 1). This method was first proposed in [19] as
being suboptimal. As we have argued, with the hypothesis we make here, it is
actually optimal.

The reader may ask what happens if the assumptions made in (8) are not
satisfied. If the model is non-linear, then we know no better than running a
large optimization problem in the fashion of [22]. If the model is non-minimum
phase, our solution will yield the closest minimum-phase model, in the sense of
minimum variance. Alternatively one can identify the model using high-order
cumulants as in [11].

Fig. 1. Typical example of a residual histogram (sample approximation of q). Although
the sample pool (number of frames) is small, the non-Gaussian nature of the distribu-
tion is clear.

5 Experiments

Face data were obtained using a 60Hz camera and tracking points on the lower
region of the face for 200-300 frames. An implementation of the Shi-Tomasi
feature tracker [20,15] was developed for this purpose.

We modeled face images using shape and radiance elements as in [9]. The
shape element s = (x1, x2, ..., xl) ∈ R

2l is defined by vertex coordinates (tracked
points) of an n-point triangular mesh encompassing the face. Associated with ev-
ery s(t) is the supporting face albedo (texture), ρ(x, t), such that I(x, t) = ρ(x, t)
where I is the face image at pixel x. To obtain sensible configurations of points
to encompass the lower part of the face around the mouth and to reduce the
number of outliers, we guided the feature selection by providing an image mask
defining the regions to select features from. Figure 2 shows the configuration of
tracked points on the subject’s face. For every utterance sequence we obtained a
training data set s(t) and corresponding ρ(x, t). Speech data was extracted from
the synchronized audio signal. We used 256 periodogram coefficients as repre-
sentation for speech segments corresponding to individual video frames, and we
PCA reduced the dimensionality to arrive at u(t) ∈ R

4. The choice of dimension
here was a design parameter adjusted for best results.
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Fig. 2. Standard tracking schemes [20] were used to track feature point positions over
200-300 frames, sampled at 60 frames per second. About 200 points were selected in
the first frame and tracked throughout the sequence.

Fig. 3. Typical examples of error plots, feature position discrepancies between synthesis
and actual data obtained via cross validation. The right figure is the the time evolution
of error (discrepancy between synthesized feature motion vs. actual motion) for feature
point number 100, a typical point near the center where fast and error prone motions
occur. The left is the error vector field (synthesis-data) for all the points for a typical
frame. The error for all feature points remained small for other frames in the sequence
as depicted in this example.

Given s(t) data we obtained the PCA reduced shape parameters y(t) repre-
senting the output of the system. Following the inference procedure of section
4.1 we first identified the deterministic system parameters Ad, Bd, Cd, Dd using
y(t) as output and u(t) as input. Then we identified the stochastic subsystem
parameters as outlined in 4.2. As part of this step we get the non-Gaussian
histograms corresponding to independent components of v(t) = D−1e(t) which
is later used to generate, by sampling from the distribution, the random input
driving the stochastic subsystem.
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Fig. 4. An example of facial motion driven by a novel speech input. The subject is
uttering the quote “live long and prosper”. Cross validation technique was used where
first half of the video is utilized for learning system parameters, and the speech part of
the second half of the video is used for synthesis and validation. Row one is the speech
signal, sampled at 44100 Hz. Row two is the system output, synthetic feature point
positions. Row three is the full textured reconstruction of the face by way of identifying
the ”closest” feature configuration in the data-set and morphing its corresponding face
image into the shape described by synthesic face pose. Row 4 is the actual facial motion
associated with the data used for control proposes in cross-validation.
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Given the identified model parameters and novel speech segment un(t) we
evolved the system (3) forward in time to obtain corresponding synthetic facial
motion trajectories. This involved feeding un(t) to the deterministic component
of the system and drawing random samples from the non-Gaussian histogram
of q to drive the stochastic component of the system. Note that here un(t)
corresponds to the same speaker and utterance as in the data, but it is a novel
instance of it. For testing purposes we used only half of the data segments for
training. The other half was used to extract the speech segment un(t).

At the end we used the synthesized facial shapes, sn(t), to construct facial
image sequences. For a given shape sn(t) we identified the closest (L2 norm)
shape si in the training data and morphed its corresponding albedo ρi onto sn(t).
Facial image I at pixel x was computed according to I(x) = ρi(w(x, si, sn(t))
where we have defined the piecewise affine (backward) warp function w : R

2 →
R

2 as w(x, si, sn) = A(x, si, sn)x + b(x, si, sn), with A ∈ R
2x2, b ∈ R

2. w maps
pixel coordinate x within the triangular grid of sn to point w(x, xi, xn) within
the corresponding triangular grid of si.

The identification of the correct shape si from data to match sn(t) is, of
course, highly non-trivial, particularly for systems designed to include the entire
span of utterances. Such schemes would require construction of a basic alphabet
for the space of utterances in the image space; visemes and other variants have
been devised for this purpose and there are existing techniques for identifying
viseme sequences corresponding to arbitrary speech waveforms. But in our case
this is sufficient for demonstrating the efficacy of the modeling process which is
mainly on the geometry of the face.

Motivated by the ultimate prospect of a real-time system, we relied on graph-
ics texture mapping to achieve morphing of the matched albedos onto shapes of
synthesized faces. That is, by creating a mesh, in this case 2D, using the shape
vectors we mapped the matched albedos in the data onto novel facial shapes.
The technique is computationally efficient and benefits from graphics hardware
for texture mapping. The resulting dynamics was faithful to original utterances
and reconstructed images exhibit no blurring artifacts5.

6 Conclusions

We presented a method for modeling facial motion induced by speech. We used
a representation for the face where geometric and photometric elements are
decoupled. We modeled the dynamics of the geometric (shape) component using
a linear dynamical system made up of two parts, a deterministic component
driven by the speech waveform and a stochastic part driven by non-Gaussian
noise. In our initial stage of development we show examples of the model at
work using a set of various utterances, including digits and famous quotes. With
this small set, we showed experimental results demonstrating the efficacy of our
model in capturing the complexities of time dependent and multi-modal data.
5 Sample movies of synthesized sequences can be downloaded from
http://www.ee.ucla.edu/$\sim$saisan/Face.html

http://www.ee.ucla.edu/$sim $saisan/Face.html
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