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Abstract. The deformation of applicable surfaces such as sheets of paper satisfies
the differential geometric constraints of isometry (lengths and areas are con-
served) and vanishing Gaussian curvature. We show that these constraints lead to
a closed set of equations that allow recovery of the full geometric structure from a
single image of the surface and knowledge of its undeformed shape. We show that
these partial differential equations can be reduced to the Hopf equation that arises
in non-linear wave propagation, and deformations of the paper can be interpreted
in terms of the characteristics of this equation. A new exact integration of these
equations is developed that relates the 3-D structure of the applicable surface to
an image. The solution is tested by comparison with particular exact solutions. We
present results for both the forward and the inverse 3D structure recovery problem.
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1 Introduction

When a picture or text printed on paper is imaged, we are presented with a problem
of unwarping the captured digital image to its flat, fronto-parallel representation, as a
preprocessing step before performing tasks such as identification, or Optical Character
Recognition (OCR). In the case that the paper is flat, the problem reduces to one of
undoing a projection of an initial shape such as a rectangle, and the rectification (or
unwarping) can be achieved by computing a simple homography. A harder problem is
when the piece of paper is itself deformed or bent. In this case the unwarping must
undo both the effects of the three-dimensional bending of the surface, and the imaging
process. The differential geometry of surfaces provides a very powerful set of relations for
analysis of the unwarping. However, most quantitative use of differential geometry has
been restricted to range data, while its use for image data has been primarily qualitative.
The deformation of paper surfaces satisfies the conditions of isometry and vanishing
Gaussian curvature. Here, we show that these conditions can be analytically integrated
to infer the complete 3D structure of the surface from an image of its bounding contour.

Previous authors have attempted to enforce these conditions in 3D reconstruction.
However, they essentially enforced these as constraints to a process of polynomial/spline
fitting using data obtained on the surface [16]. In contrast, we solve these equations, and
show that information on the bounding contour is sufficient to determine structure com-
pletely. Further, exact correspondence information along the bounding contour is not
needed. We only need the correspondences of a few points, e.g., corners. Other than its

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3023, pp. 482–496, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Structure of Applicable Surfaces from Single Views 483

theoretical importance, our research can potentially benefit diverse computer vision ap-
plications, e.g. portable scanning devices, digital flattening of creased documents, 3D re-
construction without correspondence, and perhaps most importantly, OCR of scene text.

2 Previous Work

A seminal paper by Koenderink [7] addressed the understanding of 3D structure quali-
tatively from occluding contours in images. It was shown that the concavities and con-
vexities of visual contours are sufficient to infer the local shape of a surface. Here, we
perform quantitative recovery of 3D surface structure for the case of applicable surfaces.
While we were not able to find similar papers dealing with analytical integration of the
equations of differential geometry to obtain structure, the following papers deal with
related problems of unwarping scene text, or using differential geometric constraints for
reconstruction.

Metric rectification of planar surfaces: In [2,12,15] algorithms for performing
metric rectification of planar surfaces were considered. These papers extract from the
images, features such as vanishing lines and right angles and perform rectification.
Extraction of vanishing lines is achieved by different methods; such as the projection
profile method [2] and the illusory and non-illusory lines in textual layouts [15].

Undoing paper curl for non-planar surfaces knowing range data: A number of
papers deal with correcting the curl of documents using known shape (e.g. cylinders) [11,
19]. These approaches all need 3D points on the surface to solve for the inverse mapping.
In [16] sparse 3D data on the curled paper surface was obtained from a laser device. An
approximate algorithm to fit an applicable surface through these points was developed
that allowed obtaining dense depth data. The isometry constraint was approximately
enforced by requiring that distances between adjacent nodes be constant. In [1] a mass-
spring particle system framework was used for digital flattening of destroyed documents
using depth measurements, though the differential geometry constraints are not enforced.

Isometric surfaces: In [10] an algorithm is developed to bend virtual paper with-
out shearing or tearing. Ref. [13] considers the shape-from-motion problem for shapes
deformed under isometric mapping.

3 Theory

3.1 Basic Surface Representation

A surface is the exterior boundary of an object/body. In a 3D world coordinate system, a
surface r = r(X, Y, Z), (where (X, Y, Z) is any point on the surface) is mathematically
represented in explicit, implicit and parametric forms respectively as:

z = f(x, y), F (x, y, z) = 0, r(u, v) =(X(u, v), Y (u, v), Z(u, v)). (1)

Consider a smooth surface S expressed parametrically as:

r(u,v) = (X(u, v), Y (u, v), Z(u, v)), (2)
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Fig. 1. Parametric representation of a surface

which is a mapping from any point (u, v) in the parametric (or undeformed) plane (uv-
plane) to a point (X, Y, Z) on the surface in 3D (Figure 3). The sets {r(u, v), v = const}
and {r(u, v), u = const} represent two families of curves on the surface, whose partial
derivatives are tangent vectors to the curves v = const and u = const respectively.
These derivatives are often called tangent vectors [9]. Let the second derivatives of r
with respect to u and v be ruu, ruv and rvv . The element of distance ds = |dr| on the
surface is given at each surface point (u, v) by the first fundamental form of a surface

ds2 = |dr|2 = ||ru||2du2+2ru ·rv dudv+||rv||2dv2 = E du2+2F dudv+G dv2,

E(u, v) = ||ru||2, F (u, v) = ru · rv, G(u, v) = ||rv||2.
The surface coordinates are orthogonal iff F ≡ 0. The surface normal n and area element
dn can be defined in terms of the tangent vectors as:

n =
ru × rv

|ru × rv| =
√

EG − F 2, dn = |ru × rv| dudv =
√

EG − F 2 dudv. (3)

The second fundamental form of a surface at a point (u, v) measures how far the surface
is from being planar. It is given by

−dr·dn = L(u, v)du2 + 2M(u, v)dudv + N(u, v)dv2, (4)

where L, M and N are standard and defined e.g., in [9]. For every normal section through
(u, v) there exist two principal curvatures (k1, k2). The mean and Gaussian curvature;
H(u, v) and K(u, v) are

H ≡ k1 + k2

2
=

1
2

EN − 2FM + GL

EG − F 2 , K ≡ k1k2 =
LN − M2

EG − F 2 . (5)

3.2 Special Surfaces

Let us assume that we have a mapping of a point in the parametric plane (u, v) to a point
in 3D (X, Y, Z). The mapping is isometric if the length of a curve or element of area is
invariant with the mapping, i.e.

E(u, v) = ||ru||2 = 1, F (u, v) = ru · rv = 0, G(u, v) = ||rv||2 = 1. (6)
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Lengths and areas are conserved in an isometric mapping

ds2 = |dr|2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2 = du2 + dv2,

dA =
√

EG − F 2 dudv = dudv.

The mapping is conformal if the angle between curves on a surface is invariant of the
mapping (F = 0). It is developable if the Gaussian curvature is zero everywhere.

K = 0 =⇒ LN − M2 = 0. (7)

It is applicable if the surface is isometric with a flat surface (Eq. 6) and the Gaussian
curvature vanishes (Eq. 7) for every point on the surface.

3.3 Differential Equations for Applicable Surfaces

If we differentiate Eq. (6), we have:

ruu · ru = ruu · rv = ruv · ru = ruv · rv = rvv · ru = rvv · rv = 0. (8)

This shows that ruu = (Xuu, Yuu, Zuu), ruv = (Xuv, Yuv, Zuv) and rvv =
(Xvv, Yvv, Zvv) are perpendicular to ru and rv and consequently, are collinear with
the normal vector to the surface.

n ‖ (ru × rv) || ruu ‖ ruv ‖ rvv, (9)

where || denotes \is parallel to". We can thus express n as

n =aruu = bruv = crvv. (10)

We can rewrite (7) using (10) as:

LN − M2 = 0 =⇒ a||n||2c||n||2 − b2||n||2||n||2 = 0 =⇒ ac − b2 = 0,
(11)

where a, b, and c are scalars, and

ruv

ruu
=

a

b
=

b

c
=

rvv

ruv
. (12)

Therefore from (12) we have:

∂2W

∂v2

∂2W

∂u2 =
(

∂2W

∂u∂v

)2

, for W = X, Y, Z. (13)

Solving the set of nonlinear higher order partial differential equations (PDEs) (Eq. 13),
we can compute the surface structure r in 3D, given boundary conditions (curves) for an
applicable surface. These equations may be solved by conventional methods of solving
PDEs e.g. Finite Differences or FEM. However, we provide a much more efficient
method, based on reducing the solution to integration of several simultaneous ODEs.
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3.4 A First Integration: Reduction to ODEs

Let Wu = ∂W/∂u, Wv = ∂W/∂v. The functions Wu (u, v) and Wv (u, v) satisfy the
consistency conditions

∂Wu

∂v
=

∂Wv

∂u
, W = X, Y, Z. (14)

i.e. cross-derivatives are the same. From Eqs. (13) and (14) we have

∂Wu

∂u

∂Wv

∂v
− ∂Wu

∂v

∂Wv

∂u
=

∂ (Wu, Wv)
∂(u, v)

= 0. (15)

Therefore Eq. (13) can be treated as a degeneracy condition for the Jacobian of the
mapping from (u, v) �−→ (Wu, Wv) . This degeneracy means that the functions Wu and
Wv are functions of a single variable, t, which in turn is a function of (u, v) . In other
words:

∃ t = t(u, v) such that Wu (u, v) = Wu (t) , Wv (u, v) = Wv (t) , (16)

where W = X, Y, Z. In this case t = const is a line in the parametric plane. Since
W denotes any of X, Y and Z, Eq. (16) could hold separately for each component,
with some different mapping functions tx(u, v), ty(u, v), and tz(u, v) specific to each
coordinate. However, these functions must all be equal because all are functions of the
single variable t(u, v), which can be called the mapping or characteristic function for
the surface S. Therefore,

ru = ru (t) , rv = rv (t) , (17)

where t = t(u, v). Denoting by the superscript dot the derivative of a function with
respect to t, we can write ruu and rvv as

ruu = ṙu
∂t

∂u
, rvv = ṙv

∂t

∂v
. (18)

From Eq. (9, 18), we see that ṙu and ṙv are collinear with the surface normal i.e.
ṙu||n, ṙv||n. Let us define a new vector w as :

w = uṙu (t) + vṙv (t) . (19)

Also note that w is a function of the characteristic variable t, since the Jacobian of a
mapping from (u, v) �−→ (t,m · w) for a constant vector m vanishes:

∂ (t,w · m)
∂ (u, v)

=
∂t

∂u

∂w · m
∂v

− ∂t

∂v

∂w · m
∂u

=
∂t

∂u
ṙv (t) ·m− ∂t

∂u
ṙv (t) · m

= ruv·m − ruv·m =⇒ ∂ (t,w · m)
∂ (u, v)

= 0.

This means that w is a function of t alone; w = w (t). From collinearity of w with ṙu

and ṙv it follows that two scalar functions hu (t) and hv(t) can be introduced as

ṙu (t) = hu (t)w (t) , ṙv (t) = hv(t)w (t) . (20)
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Fig. 2. Characteristics lines as generator lines

By (20), and from Eq. (19), we have

uhu (t) + vhv(t) = 1, hv(t)ṙu (t) − hu (t) ṙv (t) = 0. (21)

Therefore, Eq.(21) defines a characteristic line in the uv-plane for t = const. While
the latter equation provides a relation between functions of t, the former implicitly
determines t (u, v). Since hu (t) and hv(t) are known, Eq. (21) gives t (u, v). Note that
t satisfies the equation

hv (t)
∂t

∂u
− hu (t)

∂t

∂v
= 0, (22)

which is a Hopf-type equation, a common nonlinear hyperbolic equation in shock-wave
theory [4]. The characteristics of this equation are t (u, v) which satisfies

t (u, v) = t (u + c(t)v) , c(t) =
hu (t)
hv (t)

. (23)

Therefore, for any t = const the characteristic is a line in the uv-plane. The properties
of the Hopf equation are well studied in the theory of propagation of shock waves
in nonlinear media ([4]). Along the characteristics, t = const, all functions of t are
constant, including hu (t) and hv (t). As follows from Eq. (21), in the (u, v)-plane
these characteristics are straight lines. The lines corresponding to characteristics are
also straight lines on the surface. In fact to generate an applicable surface, we can sweep
a line in space and the generated envelope will be applicable. Through every point on
the surface there is a straight line as shown (Figure 2) by:

r (t) = uru (t) + vrv (t) + ρ (t) , ρ̇ (t) = −w (t) , (24)

The above equations are sufficient to solve the basic warping and unwarping problems
for images based on information about the shapes of the image boundaries. The goal is to
find for any characteristic line, the variables ru (t) , rv (t) , ρ (t) , hu (t) and hv (t) and,
finally, r (t) from available information. To summarize the differential and algebraic
relations for applicable surfaces, we have
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r (u, v) = uru (t) + vrv (t) + ρ (t) , ṙu (t) = hu (t)w (t) , ṙv (t) = hv(t)w (t) ,

ρ̇ (t) = −w (t) , uhu (t) + vhv(t) = 1, ||ru||2 = 1, ru · rv = 0, ||rv||2 = 1.
(25)

Fig. 3. Generation of an applicable surface with a 3D curve. In this example a straight line Γ ′ in
the uv-plane is mapped on a given 3D curve Γ.

3.5 Forward Problem: Surface with a Specified Boundary Curve

Here, we specify the bending of a flat page in 3D so that one edge conforms to a given 3D
curve. We call this the forward problem. We generate the warped surface to demonstrate
the solution to Eq. (25).

Let Γ ′be an open curve on a patch Ω′ ⊂ P in the uv-plane, corresponding to an open
curve Γ in 3D. To generate an applicable surface in 3D, knowledge of the corresponding
curves Γ ′ and Γ and the patch boundaries in the uv-plane (Figure 3) are sufficient. We
know that the curve Γ ′ starts from a point A′ = (u0, v0) and the corresponding curve
Γ passes from A = (X0, Y0, Z0) and the point B corresponds to the point B′. Due to
isometry, the length of the two curves are the same, and there is a one-to-one mapping
from a domain Ω′ ⊂ P to Ω ⊂ S, which are respectively bounded by Γ ′ and Γ. For
any point (u∗, v∗) ∈ Ω′ there exists a characteristic, t = t∗, which also passes through
some point on Γ ′. Assume now that Γ ′ is specified by the parametric equations

u = U (t) , v = V (t), u2 + v2 	= 0.

Without loss of generality, we can select t to be a natural parameterization of Γ ′ ,
measured from point A′; i.e. the arc length s along the curve Γ , measured from the
curve starting point t = t0,

s ≡
∫ t

t0

ds ≡
∫ t

t0

√
dr.dr. (26)

parametrizes the curve. Let Γ ′ : (U(t), V (t)) be in [tmin,tmax]. If we represent Γ in
parametric form as r = R(t), then due to isometry, t will also be a natural parameter
for Γ ′, and
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U̇2 + V̇ 2 = 1, Ṙ · Ṙ =1. (27)

The surface equations for any (u, v) ∈ Ω′ are

ru · ru = 1, ru · rv = 0, rv · rv = 1,

Uhu + V hv = 1, hv ṙu − huṙv = 0, Uru + V rv + ρ = R. (28)

While the number of unknowns here is 11 (ru, rv, ρ, hu, hv) and the number of equations
are 12 (Eqs. 27,28) but two of them are dependent(Eqs. including hu and hv). For unique
solution of Eqs. (27,28), we differentiate Eq. (27) to obtain sufficient equations to solve
the forward problem

ṙu =
huF

U̇hu + V̇ hv

, ṙv =
hvF

U̇hu + V̇ hv

, hu =
gu

V gv + Ugu
, hv =

gv

V gv + Ugu
,

F = R̈−Üru − V̈ rv, gu =
...
U − ...

R · ru, gv =
...
V − ...

R · rv. (29)

These equations must be integrated numerically using, e.g., the Runge-Kutta method
[17]. To generate the structure of the applicable surface we need for any characteristic
line, the functions ru (t),rv (t) and ρ (t); (ru (t), rv(t)) are obtained from the solution
to ODEs, while ρ (t) is computed from the fifth equation in (28). The solution to our
problem is a two-point boundary value problem (bvp). Most software for ODEs is written
for initial value problems. To solve a bvp using an initial value solver, we need to estimate
ru0 = ru (0) and rv0 = rv (0) .which achieves the correct boundary value. The vectors
ru0 and rv0 are dependent, since they satisfy the first three equations (28), which describe
two orthonormal vectors. Assuming that (ru, rv, ru × rv) is a right-handed basis, we
can always rotate the reference frame of the world coordinates so that in the rotated
coordinates we have ru0 = (1, 0, 0) , rv0 = (0, 1, 0) . Consistent initial conditions ru0
and rv0 for Eq. (28) can be obtained by application of a rotation matrix Q (α, β, γ) with
Euler angles α, β and γ, to the vectors (1, 0, 0) and (0, 1, 0) , respectively. We also can
note that for some particular cases it may happen that both the functions gv and gu in
Eq. (29) may be zero. In this case the equations for hu and hv can be replaced by the
limiting expressions for gv → 0, gu → 0. In the special case (rectangular patch in the
parametric plane), we can show that there is an analytical solution given by:

ru =
R̈ × Ṙ∣∣∣R̈

∣∣∣
, rv = Ṙ. (30)

3.6 Inverse Problem: 3D Structure Recovery of Applicable Surfaces

Here, we seek to estimate the 3D structure of an applicable surface from a single view
(with known camera model) and knowledge of the undeformed uv plane boundary. For
any point (x, y) in the image plane, we can estimate the corresponding point in the uv-
plane and vice versa by solving the ODEs for the problem. The input parameters are the
known camera model, the patch contours in the uv-plane and the image plane. Assume
that the image of the patch (Ω′) is bounded by two curves Γ ′

1 and Γ ′
2, the corresponding
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Fig. 4. Inverse Problem Schematic

patch (Ω) in the uv-plane is bounded by Γ1 and Γ2 and that the patch Ω bounded by
the two characteristics, t = tmin, and t = tmax (Fig. 4). We assume that Γ1 and Γ2
are piecewise continuous curves in the uv-plane, and not tangential to the characteristic
lines tmin < t < tmax. For any point (u∗, v∗) ∈ Ω there exists a characteristic, t = t∗,
which passes through some points on Γ1 and some points on Γ2. In the uv-plane these
curves can be specified by a natural parameterization u = U1(s1), v = V1(s1) for Γ1,
and u = U2 (s2) , v = V2(s2) for Γ2, with u2 + v2 	= 0. Here s1 (t) and s2 (t) are
unknown and must be found in the process of solution.

Γ1 and Γ2 correspond to the 3D curves r = r1 (t) and r = r2 (t), which are unknown
and found in the process of solution. Note that at the starting point or end point, Γ1 and
Γ2 may intersect. At such a point the characteristic t = tmin or t = tmax is tangential to
the boundary or the boundary is not smooth (e.g. we are at a corner). In case Γ1 and Γ2
intersect at t = tmin and t = tmax they completely define the boundary of the patch Ω.
These cases are not special and can be handled by the general method described below.
Assume that the camera is calibrated, and the relation between the world coordinates
r =(X, Y, Z) and coordinates of the image plane (x, y) are known as x = Fx(r) and
y = Fy(r). What is also known are the equations for Γ ′

1 and Γ ′
2 that are images of the

patch boundaries Γ1 and Γ2. These equations, assumed to be in the form x = x1 (τ1) ,
y = y1 (τ1) for Γ ′

1; and x = x2 (τ2) , y = y2 (τ2) for Γ ′
2. Here τ1 and τ2 are the

natural parameters of these curves; τ1 (t) and τ2 (t) are obtained from the solution. The
specification of the curve parameters as \natural" means:

U ′2
i + V ′2

i = 1, x′2
i + y′2

i = 1, i = 1, 2. (31)

A complete set of equations describing the surface can be reduced then to

ru · ru = 1, ru · rv = 0, rv · rv = 1, (32)

r2 = (U2 − U1) ru + (V2 − V1) rv + r1, ṙi = ṡi (U ′
iru + V ′

i rv) ,

Fx (ri) = xi (τi) , Fy (ri) = yi (τi) , i = 1, 2.

We have 16 equations relating the 15 unknowns (ru, rv, r1, r2, s1, s2, τ1, τ2). As in the
previous case, one equation depends the other 15 and so the system is consistent. After
s(t), r1 (t) , ru (t) , and rv (t) are found, hu, hv, and ρ can be determined as
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hu =
V2 − V1

U1V2 − U2V1
, hv =

U1 − U2

U1V2 − U2V1
, ρ = r1 − U1ru − V1rv. (33)

This enables determination of t (u, v) and r (u, v) , similar to the forward problem. Here
too the vector w is collinear to the normal to the surface (Eq. 19) and satisfies w = kn.
Let the rate of change of s1 be a constant, ˙s10. The ODEs containing the unknowns
(s1, s2, τ1, τ2, ru, rv, ρ) can be written as follows:

s1 = ṡ10t, τ̇1 = ṡ10c1 · a1, ṡ2 = − kf2 · b2

e2 · b2 + c2 · [(c2 · a2)d2 + G2 · c2]
,

τ̇2 = ṡ2c2 · a2, k = −e1 · b1 + c1 · [(c1 · a1)d1 + G1 · c1]
f1 · b1

ṡ10, ṙu = khun,

ṙv = khvn, ρ̇ = −kn, hu =
v2 − v1

u1v2 − u2v1
, hv =

u1 − u2

u1v2 − u2v1
,

ai (τi, ri) =
x′

i∇Fx (r1) + y′
i∇Fy (ri)

x′2
i + y′2

i

, bi (τi, ri) = y′
i∇Fx (ri) − x′

i∇Fy (ri) ,

ci (si, ru, rv) = u′
iru + v′

irv, di = y′′
i ∇Fx (ri) − x′′

i ∇Fy (ri) , ei = u′′
i ru + v′′

i rv,

fi = (u′
ihu + v′

ihv)n, Gi = y′
i∇∇Fx (ri) − x′

i∇∇Fy (ri) . (34)

To start the integration of the inverse problem, we need initial conditions for (s1, s2, τ1,
τ2, ru, rv, ρ).

Solution to the Boundary Value Problem: While the equation above can be solved
for a general camera model, we will consider the simple orthographic case here. We can
show these initial values here are:

t0 = s10 = s20 = τ10 = τ20 = 0, r10 = r20 = r0,

u10 = u20 = u0, v10 = v20 = v0, x10 = x20 = Fx (r0) , y10 = y20 = Fy (r0) ,

and for the starting point in 3D, r0 = r0 (x0, y0, z0) where z0 is some free parameter in
the orthographic case. Note also that at the initial point the formulae for huand hv

hu =
v2 − v1

u1v2 − u2v1
, hv =

u1 − u2

u1v2 − u2v1
. (35)

are not acceptable, since the numerators and denominators are zero. However, we can
find hu0 and hv0 from

u0hu0 + v0hv0 = 1, ṡ10 (u′
10hu0 + v′

10hv0) = ṡ20 (u′
20hu0 + v′

20hv0) . (36)

The solution of this linear system specifies hu0 and hv0 as a function of ṡ20, which can be
estimated from the free parameter, and is in fact one of the Euler angles γ0 . Recalling that
(ru, rv, ru × rv) is a right-handed basis, we can rotate the reference frame of the world
coordinates by Euler angles (α0, β0, γ0) so that we have ru0 = (1, 0, 0) , rv0 = (0, 1, 0).
Further:

ṡ10e10 · b10 + k0f10 · b10 + ṡ10c10 · [(c10 · a10)d10 + G10 · c10] = 0,

ṡ20e20 · b20 + k0f20 · b20 + ṡ20c20 · [(c20 · a20)d20 + G20 · c20] = 0,

c10 · b10 = 0, c20 · b20 = 0. (37)
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These 4 relations can be treated as equations relating the 10 unknowns k0, ru0, rv0,n0
(ru0, rv0 and n0 are 3D vectors).Also ru0, rv0, and n0 form an orthonormal basis, which
therefore can be completely described by the three Euler angles (α0, β0, γ0) :

ru0 = Q0




1
0
0



 , rv0 = Q0




0
1
0



 , n0 = Q0




0
0
1



 ,

where Q0 is the Euler rotation matrix. This shows that ru0, rv0, and n0 a three-parameter
set depending on (α0, β0, γ0). Thus the relations Eq. (37) can be treated as 4 equations
with respect to the unknowns k0, α0, β0, γ0, for given ṡ20 or k0, α0, β0, ṡ20 for given
γ0, and can be solved. Then

ρ0 = r0 − u0ru0 − v0rv0. (38)

determines ρ0 as soon as ru0, rv0, and r0 are specified. Furthermore, we can reduce
the four equations above to one nonlinear equation, whose roots can be determined by
conventional numerical methods [17].

We found that this equation has two solutions, and so the Euler angles have four
possible values. By choosing the free parameter γ0 (Orthographic case), we can set all
the initial conditions needed for the inverse problem. The challenge is to get the best
estimate of γ0 so that the boundary condition specifying correspondence points (such as
the corners) is achieved. This is called the shooting method. We do this by minimizing
a cost function J :

J = arg min
γ0

||(xe, ye) − F(r(tmax; γ0, Γ1, Γ2, Γ
′
1, Γ

′
2))||, (39)

where (xe, ye) is the image coordinates of the 3D surface ending point (Xe, Ye, Ze)
and r(tmax; γ0, Γ1, Γ2, Γ

′
1, Γ

′
2) is the last step of the 3D structure solution and F is the

camera model function. It is clear that F(r(tmax; γ0, Γ1, Γ2, Γ
′
1, Γ

′
2)) is the ending point

of 3D surface calculated by the ODE solver. Therefore, we change the free parameter γ0
until we can hit the ending corner or are within a specified tolerance of the ending point
in the image plane. If the number of the correspondence points on the edge available
exceeds the number of shooting parameters (say the 4 corners) a least-square approach
can be used.

Ambiguities: As stated in the inverse problem, the method relies on the boundary
information of the patch in the image plane. So, since some deformations can lead us
to the same images of the boundary, we have ambiguities. In these cases we need to
extract other useful cues such as texture or shading to resolve the ambiguities. This is
the subject for future work.
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4 Discussion and Results

4.1 Simple Validation of the Forward Problem

The purpose of this paper is to present and validate the new method. For this purpose
we implemented the solution in algorithms. In the validation stage, we compared the
results for warping to a 3D curve with the following analytical solution corresponding
to a cylindrical surface

X = u − umin, Y = N cos ϕ (v) , Z = N sin ϕ (v) , ϕ (v) = v/N. (40)

To reproduce this surface we started our algorithm for warping with a 3D curve with the
condition that in the (u, v)-plane the curve is a straight line, u = umin, and the fact that
the corresponding 3D curve is

X(t) = 0, Y (t) = N cos ϕ (t) , Z(t) = N sin ϕ (t) . (41)

For this surface we have the initial conditions for integration as ru0 = (−1, 0, 0) ,
rv0 = (0,− sin ϕ0, cos ϕ0) with ϕ0 = vmin/N . We integrated the forward problem
Eq. (29) numerically using an ODE solver from MATLAB, which was based on the 4th

order Runge-Kutta method. The results were identical to the analytical solution within
the tolerance specified to the solver. We also checked that solution (30) is correct.

4.2 Forward Problem: Implementation Issues and Results

After initial tests we used the method of warping with 3D curves for generation of
more complex applicable surfaces. The tests were performed both by straightforward
numerical integration of ODE’s (29) and using the analytical solution for rectangular
pathces (30). Both methods showed accurate and consistent results. To generate an
example curve R(t) parametrized naturally, we specified another function R̃(θ) where
θ is an arbitrary parameter and then used transform

R(t) =R̃(θ),
dt

dθ
=

∣∣∣∣∣
dR̃(θ)

dθ

∣∣∣∣∣
, (42)

which provides
∣∣∣Ṙ

∣∣∣ = 1, and guarantees that t is the natural parameter. The function

R̃(θ) used in tests was

R̃(θ) = (P (θ) , N cos θ, N sin θ) , P (θ) = a1θ + a2θ
2 + a3θ

3 + a4θ
4, (43)

and some other than polynomial dependencies P (θ) were tested as well. One of the
examples of image warping with a 3D curve is presented in Figure 5.

For this case the boundary curve were selected in the form (43), with parameters
N = 200, a1 = 20, a2 = 10, a3 = 10, a4 = −10 and we used Eqs (31) and (34)
to generate the 3D structure and characteristics. In this example the characteristics for
this surface are not parallel, which is clearly seen from the graph in the upper right
corner of Fig. 5. The image of the portrait of Ginevra dé Bencia by Leonardo da Vinci,
was fit into a rectangle in the uv-plane and warped with the generated surface. Further
its orthographic projection was produced using pixel-by-pixel mapping of the obtained
transform from the (u, v) to the (x, y) . These pictures are also shown in Figure 5.
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Fig. 5. ‘Forward’problem: given a plane sheet of paper, and a smooth 3-D open curve in Cartesian
XY Z space. Our goal is to bend the paper so that one edge conforms to the specified curve. Using
the analytical integration of the differential geometric equations specifying applicability we are
able to achieve this. We can also achieve the same result not only for the straight line edge, but
for an arbitrary 2-D curve in the uv-plane. The picture shown are actual computations.

4.3 Inverse Problem: Implementation Issues and Results

To check the validity of the unwarping procedure, we ran the 2D unwarping problem with
synthetic input data on the patch boundaries and corner correspondence points obtained
by the warping procedure. The output of the solver providing hu, hv, ru, rv, and ρ as
functions of t coincided with these functions obtained by the 3D curve warping program
within the tolerance specified for the ODE solver. The unwarped pixel-by-pixel images
are shown in Figure 6 as the end point of the unwarping process in the xy-plane. We ran
the algorithm for small fonts. The original image has the same font size everywhere and
with the forward algorithm we warp the image. The unwarped image has uniform font
size everywhere, lines are parallel and right angles are preserved. The output is noisy at
the top of the output image, since in the image this information was lost. We make the
following remarks about the implementation of the inverse problem:

Global Parametrization: In the inverse problem, we march the ODE’s with respect
to the bounding contours in uv-plane and xy-plane. Therefore, for simplicity and mod-
ularity, we use a global parameter η for bounding contours that runs from η in [0,1]
on the first boundary to η = [3, 4] on the last. This parameterization gives us a simple
and exact way of tracking the edges at the boundary contours and the correspondence
between them.

ODE solver: To solve the ODE, we applied the Runge-Kutta 4th and 5th order in
MATLAB, except for the last edge of the ODE, where the problem was computationally
stiff. For this, we solved the ODE by Gear’s method [17].
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(a) (b) (c)

Fig. 6. Inverse Problem for small font: a) original image b) warped by the forward R̃(θ) =
(aθ(b − θ3), Ncosθ, Nsinθ) where a = 10, b = 2, N = 200 c) unwarped by the inverse
problem

Automatic Corner Detection by ODE solver: We need the corners in the image
plane for the boundary of the patch to solve the inverse problem. As stated, the global
natural parameterization of the curve in image plane, gives us an easy and reliable feature
for corner detection. Basically, the corner is reached when s2 and τ2( global parameters
of Γ ′

2 and Γ2) are1, 2 and 3, respectively.

5 Conclusion and Future Work

This paper presents, to our knowledge, the first occasion that differential geometry has
been used quantitatively in the recovery of structure from images. A theory and method
for warping and unwarping images for applicable surfaces based on patch boundary
information and solution of nonlinear PDEs of differential geometry was developed. The
method is fast, accurate and correspondence free (except for a few boundary points).

We see many useful applications of this method for virtual reality simulations, com-
puter vision, and graphics; e.g. 3D reconstruction, animation, object classification, OCR,
etc. While the purpose of this study was developing and testing of the method itself, ongo-
ing work is related both to theoretical studies and to development of practical algorithms.
This includes more detailed studies of the properties of the obtained equations, problems
of camera calibration, boundary extraction, sensitivity analysis, efficient minimization
procedures, and unwarping of images acquired by a camera, where our particular interest
is in undoing the curl distortion of pages with printed text.
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