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Abstract. We address the problem of selecting a subset of the most rel-
evant features from a set of sample data in cases where there are multiple
(equally reasonable) solutions. In particular, this topic includes on one
hand the introduction of hand-crafted kernels which emphasize certain
desirable aspects of the data and, on the other hand, the suppression of
one of the solutions given “side” data, i.e., when one is given informa-
tion about undesired aspects of the data. Such situations often arise when
there are several, even conflicting, dimensions to the data. For example,
documents can be clustered based on topic, authorship or writing style;
images of human faces can be clustered based on illumination conditions,
facial expressions or by person identity, and so forth.
Starting from a spectral method for feature selection, known as Q − α ,
we introduce first a kernel version of the approach thereby adding the
power of non-linearity to the underlying representations and the choice to
emphasize certain kernel-dependent aspects of the data. As an alternative
to the use of a kernel we introduce a principled manner for making use of
auxiliary data within a spectral approach for handling situations where
multiple subsets of relevant features exist in the data. The algorithm we
will introduce allows for inhibition of relevant features of the auxiliary
dataset and allows for creating a topological model of all relevant feature
subsets in the dataset.
To evaluate the effectiveness of our approach we have conducted exper-
iments both on real-images of human faces under varying illumination,
facial expressions and person identity and on general machine learning
tasks taken from the UC Irvine repository. The performance of our al-
gorithm for selecting features with side information is generally superior
to current methods we tested (PCA,OPCA,CPCA and SDR-SI).

1 Introduction

The problem of focusing on the most relevant measurements in a potentially
overwhelming quantity of data is fundamental in machine vision and learning.
Seeking out the relevant coordinates of a measurement vector is essential for
making useful predictions as prediction accuracy drops significantly and training
set size might grow exponentially with the growth of irrelevant features. To



add complexity to what already is non-trivial, natural data sets may contain
multiple solutions, i.e., valid alternatives for relevant coordinate sets, depending
on the task at hand. For example, documents can be analyzed based on topic,
authorship or writing style; face images can be classified based on illumination
conditions, facial expressions or by person identity; gene expressions levels can
be clustered by pathologies or by correlations that also exist in other conditions.

The main running example that we will use in this paper is that of selecting
features from an unlabeled (unsupervised) dataset consisting of human frontal
faces where the desired features are relevant for inter-person variability. The face
images we will use vary along four dimensions; (i) people identity, (ii) facial ex-
pressions, (iii) illumination conditions, and (iv) occlusions (see Fig. 1). One could
possibly select relevant features for each of the three dimensions of relevance —
the challenge is how to perform the feature selection process on unlabeled data
given that there are multiple solutions (in this case four different ones)?

There are two principal ways to handle this problem. First is by embedding
the feature selection algorithm into a higher dimensional space using a hand-
crafted kernel function (the so called “kernel design” effort [11]). By selecting
the right kernel function it may be possible to emphasize certain aspects of the
data and de-emphasize others. Alternatively, the second approach is to introduce
the notion of side information which is to provide auxiliary data in the form of
an additional dataset which contains only the undesired dimensions of relevance.
The feature selection process would then proceed by selecting features that en-
hance general dimensions of relevancy in the main dataset while inhibiting the
dimensions of relevance in the auxiliary dataset.

Fig. 1. 25 out of
the 26 images in
the AR dataset for
three different per-
sons. Images vary
not only in person
identity but also
in illumination, fa-
cial expression, and
amount and type of
occlusion.

In this work we address both approaches. We start with the principle of
spectral-based feature selection (introduced by [19]) and modify it to serve two
new purposes: (i) endowing the approach with the power of kernel functions,
satisfying the first approach for enriching the vector representation, and (ii)
making use of auxiliary data for situations in which multiple subsets of relevant
features exist in the data. The algorithm we will introduce allows for inhibition
of relevant features of the auxiliary dataset and allows for creating a topological
model of all relevant feature subsets in the dataset. The auxiliary dataset we
consider could come in two different forms: the first being additional data points



which represent undesired variability of the data, while the second form of side
data consists of pairs of points which belong to different classes of variability,
i.e., are considered far away from each other in the space of selected coordinates.

Side information (a.k.a “irrelevant statistics” or “background information”)
appears in various contexts in the literature — clustering [20, 1, 14] and contin-
uous dimensionality reduction [15, 5]. In this paper we address the use of side
information in the context of a hard selection of a feature subset. Feature selec-
tion from unlabeled data differs from dimensionality reduction in that it only
selects a handful of features which are “relevant” with respect to some infer-
ence task. Dimensionality reduction algorithms, for example PCA, generate a
small number of features each of which is a combination of all of the original
features. In many situations of interest, in visual analysis in particular but also
in other application domains such as Genomics for instance, it is assumed that
each process being studied involves only a limited number of features taken from
a pool of a very large set of measurements. For this reason feature combination
methods are not as desirable as methods that extract a small subset of features.
The challenge in the selection process is to overcome the computational burden
of pruning an exponential amount of feature subsets. The Q − α algorithm [19]
which we propose using as a basis for our approach handles the exponential
search space by harnessing the spectral information in such a manner where a
computationally straightforward optimization guarantees a sparse solution, i.e.,
a selection of features rather than a combination of the original features.

In the subsection below we will describe the Q−α algorithm which forms the
background for the work presented in this paper. In Section 2 we derive a kernel
method version of the Q−α algorithm which enables the representation of high
order cumulants among the entries of the feature vectors thereby considerably
strengthening the feature selection methodology. In Section 3 we introduce the
auxiliary data matrix as a side data and derive the optimization for selecting
relevant features using the main dataset while inhibiting relevant features from
the auxiliary dataset. In Section 4 we take the notion of auxiliary dataset a
step further and form a complete topographical model of the relevant feature
subsets. The general idea is based on rounds where the relevant features selected
in previous rounds form “side” information for subsequent rounds. In this manner
a hierarchical modeling the feature subsets becomes feasible and can be used for
visualization and data modeling. In Section 5 we make use of another form of
side information where the auxiliary data consists of pairs of points which belong
to different classes of variability, i.e., are considered far away from each other in
the space of selected coordinates. In Section 6 we evaluate the effectiveness of our
algorithms by experiments on various datasets including real-image experiments
on our main running example, and also running examples on general machine
learning tasks taken from the UC Irvine repository.

1.1 Selecting Relevant Features with the Q − α Algorithm

The Q − α algorithm for unsupervised feature selection is based on the as-
sumption that the selection of the relevant features (coordinates) will result in a



coherent set of clusters formed by the input data points restricted to the selected
coordinates. The clustering score in this approach is measured indirectly. Rather
than explicitly performing a clustering phase per feature selection candidates,
one employs spectral information in order to measure the cluster arrangement
coherency. Spectral algorithms have been proven to be successful in clustering
[16], manifold learning or dimensionality reduction [12], approximation methods
for NP-hard graph theoretical questions. In a nutshell, given a selection of fea-
tures, the strength (magnitude) of the leading k eigenvalues of the affinity matrix
constructed from the corresponding feature values across the sample data are di-
rectly related to the coherence of the cluster arrangement induced by the subset
of selected features. The scheme is described as follows:

Let the data matrix be denoted by M . The feature values form the rows of M

denoted by m>
1 , ...,m>

n and normalized to unit norm ‖mi‖ = 1. Each row vector
represents a feature (coordinate) sampled over the q trials. The column vectors
of M represent the q samples (each sample is a vector in Rn). For example,
a column can represent an image represented by its pixel values and a row
can represent a specific pixel location whose value runs over the q images. As
mentioned in the previous section, our goal is to select rows (features) from M

such that the corresponding candidate data matrix (containing only the selected
rows) consists of columns that are coherently clustered in k groups. The value
of k is user dependent and is specific to the task at hand. The challenge in this
approach is to avoid the exponential number of row selections and preferably
avoid explicitly clustering the columns of the data matrix per each selection.

Mathematically, to obtain a clustering coherency score we compute the ”affin-
ity” matrix of the candidate data matrix defined as follows. Let αi ∈ {0, 1} be
the indicator value associated with the i’th feature, i.e., αi = 1 if the i’th fea-
ture is selected and zero otherwise. Let Aα be the corresponding affinity matrix
whose (i, j) entries are the inner-product (correlation) between the i’th and j’th
columns of the resulting candidate data matrix: Aα =

∑n

i=1 αimim
>

i (sum of
rank-1 matrices). From algebraic graph theory, if the columns of the candidate
data matrix are coherently grouped into k clusters, we should expect the leading
k eigenvalues of Aα to be of high magnitude [8, 10, 2, 16]. The resulting scheme
should therefore be to maximize the sum of eigenvalues of the candidate data
matrix over all possible settings of the indicator variables αi.

What is done in practice, in order to avoid the exponential growth of assigning
binary values to n indicator variables, is to allow αi to receive real values in
an unconstrained manner. A least-squares energy function over the variables
αi is formed and its optimal value is sought after. What makes this approach
different from the “garden variety” soft-decision-type algorithms is that this
particular setup of optimizing over spectral properties guarantees that the αi

always come out positive and sparse over all local maxima of the energy function.
This property is intrinsic rather than being the result of explicit constraints in the
form of regularizers, priors or inequality constraints. We optimize the following:

max
Q,αi

trace(Q>A>

α AαQ) subject to

n∑

i=1

α2
i = 1, Q>Q = I (1)



Note that the matrix Q holds the first k eigenvectors of Aα and that trace(Q>A>

α AαQ)

is equal to the sum of squares of the leading k eigenvalues:
∑k

j=1 λ2
j . A local

maximum of the energy function is achieved by interleaving the “orthogonal
iteration” scheme [6] within the computation of α as follows:

Definition 1 (Q − α Method). Let M be an n × q input matrix with rows

m>
1 , ...,m>

n , and some orthonormal q × k matrix Q(0), i.e., Q(0)>Q(0) = I.
Perform the following steps through a cycle of iterations with index r = 1, 2, ...

1. Let G(r) be a matrix whose (i, j) components are

(m>

i mj)m
>

i Q
(r−1)

Q
(r−1)>

mj .

2. Let α(r) be the leading eigenvector of G(r).
3. Let A(r) =

∑n

i=1
α

(r)
i mim

>

i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR
−→ Q(r)R(r), that is, Q(r) is determined by the “QR” factorization of Z(r).

6. Increment index r and go to step 1.

Note that steps 4,5 of the algorithm consist of the “orthogonal iteration” module,
i.e., if we were to repeat steps 4,5 only we would converge onto the eigenvectors
of A(r). However, the algorithm does not repeat steps 4,5 in isolation and instead
recomputes the weight vector α (steps 1,2,3) before applying another cycle of
steps 4,5.

The algorithm would be meaningful provided that three conditions are met:

1. the algorithm converges to a local maximum,
2. at the local maximum αi ≥ 0 (because negative weights are not admissible),

and
3. the weight vector α is sparse (because without it the soft decision does not

easily translate into a hard gene selection).

Conditions (2) and (3) are not readily apparent in the formulation of the algo-
rithm (the energy function lacks the explicit inequality constraint αi ≥ 0 and
an explicit term to “encourage” sparse solutions) but are nevertheless satisfied.
The key for having sparse and non-negative (same sign) weights is buried in the
matrix G (step 1). Generally, the entries of G are not necessarily positive (other-
wise α would have been non-negative due to the Perron-Frobenious theorem) —
nevertheless due its makeup it can be shown that in a probabilistic manner the
leading eigenvector of G is positive with probability 1− o(1). In other words, as
the number of features n grows larger the chances that the leading eigenvector of
G is positive increases rapidly to unity. The details of why the makeup of G in-
duces such a property, the convergence proof and the proof of the ”Probabilistic
Perron-Frobenious” claim can be found in [19].

Finally, it is worth noting that the scheme can be extended to handle the
supervised situation (when class labels are provided); that the scheme can be
applied also to the Laplacian affinity matrix; and that the scheme readily applies
when the spectral gap

∑k

i=1 λ2
i −

∑q

j=k+1 λ2
j is maximized rather than

∑k

i=1 λ2
i

alone. Details can be found in [19].



2 Representing Higher-order Cumulants using Kernel

Methods

The information on which the Q − α method relies on to select features is con-
tained in the matrix G. Recall that the criterion function underlying the Q− α

algorithm is a sum over all pairwise feature vector relations:

trace(Q>A>

α AαQ) = α>Gα,

where G is defined such that Gij = (m>

i mj)m
>

i QQ>mj . It is apparent that
feature vectors interact in pairs and the interaction is bilinear. Consequently,
cumulants of the original data matrix M which are of higher order than two are
not being considered by the feature selection scheme. For example, if M were
to be decorrelated (i.e., MM> is diagonal) the matrix G would be diagonal and
the feature selection scheme would select only a single feature.

In this section we employ the ”kernel trick” to include cumulants of higher
orders among the feature vectors in the feature selection process. This serves
two purposes: On one hand the representation is enriched with non-linearities
induced by the kernel, and on the other hand, given a successful choice of a
kernel (so called Kernel Design effort [11]) one could possibly emphasize certain
desirable aspects of the data while inhibiting others.

Kernel methods in general have been attracting much attention in the ma-
chine learning literature — initially with the support vector machines [13] and
later took a life of their own (see [11]). Mathematically, the kernel approach
is defined as follows: let x1, ...,xl be vectors in the input space, say Rq, and
consider a mapping φ(x) : Rq → F where F is an inner-product space. The
kernel-trick is to calculate the inner-product in F using a kernel function k :
Rq ×Rq → R, k(xi,xj) = φ(xi)

>φ(xj), while avoiding explicit mappings (evalu-
ation of) φ(). Common choices of kernel selection include the d’th order polyno-
mial kernels k(xi,xj) = (x>

i xj + c)d and the Gaussian RBF kernels k(xi,xj) =
exp(− 1

2σ2 ‖xi−xj‖
2). If an algorithm can be restated such that the input vectors

appear in terms of inner-products only, one can substitute the inner-products
by such a kernel function. The resulting kernel algorithm can be interpreted as
running the original algorithm on the space F of mapped objects φ(x). Kernel
methods have been applied to the support vector machine (SVM), principal com-
ponent analysis (PCA), ridge regression, canonical correlation analysis (CCA),
QR factorization and the list goes on. We will focus below on deriving a kernel
method for the Q − α algorithm.

2.1 Kernel Q − α

We will consider mapping the rows m>

i of the data matrix M such that the
rows of the mapped data matrix become φ(m1)

>, ..., φ(mn)>. Since the entries
of G consist of inner-products between pairs of mapped feature vectors, the
interaction will be no longer bilinear and will contain higher-order cumulants
whose nature depends on the choice of the kernel function.



Replacing the rows of M with their mapped version introduces some chal-
lenges before we could apply the kernel trick. The affinity matrix Aα =

∑
i αiφ(mi)φ(mi)

>

cannot be explicitly evaluated because Aα is defined by outer-products rather
than inner-products of the mapped feature vectors φ(mi). The matrix Q hold-
ing the eigenvectors of Aα cannot be explicitly evaluated as well and likewise
the matrix Z = AαQ (in step 4). As a result, kernelizing the Q − α algorithm
requires one to represent α without explicitly representing Aα and Q both of
which were instrumental in the original algorithm. Moreover, the introduction
of the kernel should be done in such a manner to preserve the key property of
the original Q − α algorithm of producing a sparse solution.

Let V = MM> be the n × n matrix whose entries are evaluated using the
kernel vij = k(mi,mj). Let Q = M>E for some n × k (recall k being the
number of clusters in the data) matrix E. Let Dα = diag(α1, ..., αn) and thus
Aα = M>DαM and Z = AαQ = M>DαV E. The matrix Z cannot be explicitly
evaluated but Z>Z = E>V DαV DαV E can be evaluated. The matrix G can be
expressed with regard to E instead of Q:

Gij = (φ(mi)
>

φ(mj))φ(mi)
>

QQ
>

φ(mj)

= k(mi,mj)φ(mi)
>(M>

E)(M>
E)>φ(mj)

= k(mi,mj)v
>

i EE
>
vj

where v1, ...,vn are the columns of V . Step 5 of the Q−α algorithm consists of
a QR factorization of Z. Although Z is uncomputable it is possible to compute
R and R−1 directly from the entries of Z>Z without computing Q using the
Kernel Gram-Schmidt described in [18]. Since Q = ZR−1 = M>DαV ER−1 the
update step is simply to replace E with ER−1 and start the cycle again. In other
words, rather than updating Q we update E and from E we obtain G and from
there the newly updated α. The kernel Q − α is summarized below:

Definition 2 (Kernel Q − α). Let M be an uncomputable matrix with rows
φ(m1)

>, ..., φ(mn)>. The kernel function is given by φ(mi)
>φ(mj) = k(mi,mj).

The matrix V = MM> is a computable n× n matrix. Let E(0) be an n× k ma-
trix selected such that M>E(0) has orthonormal columns. Iterate over the steps
below, with the index r = 1, 2, ...

1. Let G(r) be a n×n matrix whose (i, j) components are k(mi,mj)v
>

i E(r−1)E(r−1)>vj .

2. Let α(r) be the largest eigenvector of G(r), and let D(r) = diag(α
(r)
1 , ..., α

(r)
n ).

3. Let Z(r) be an uncomputable matrix

Z
(r) = (M>

D
(r)

M)(M>
E

(r−1)) = M
>

D
(r)

V E
(r−1)

.

4. Z(r) QR
−→ QR. It is possible to compute directly R, R−1 from the entries of the

computable matrix Z(r)>Z(r) without explicitly computing the matrix Q (see [18]).
5. Let E(r) = E(r−1)R−1.
6. Increment index r and go to step 1.

The result of the algorithm is the weight vector α and the design matrix
G which contains all the data about the features. The drawback of the kernel
approach for handling multiple structures of the data is that the successful choice



of a kernel depends on the user and is largely an open problem. For example, with
regard to our main running example it is unclear which kernel to choose that
will strengthen the clusters induced by inter-personal variation and inhibit the
clusters induced by lighting facial expressions. We therefore move our attention
to the alternative approach using the notion of side data.

3 Q − α with Side Information

Consider the n × q data matrix M defined above as the “main” data. We are
given an auxiliary n × p data matrix W with rows w>

1 , ...,w>
n representing p

data points comprising the “side” information. Our goal is to select a subset
of coordinates, namely, determine the weight vector α such the affinity matrix∑

i αimim
>

i has coherent k clusters (measured by the sum of squares of the
first k eigenvalues) whereas

∑
i αiwiw

>

i has low cluster coherence. The desire
for low cluster coherence for the side information can be represented by small
variance of each coordinate value along the p samples. Namely, if mi is selected
as a relevant feature of the main data, we should expect that the corresponding
side feature vector wi will have a small variance. Small variance of the selected
rows of W means that the corresponding affinity matrix

∑
i αiwiw

>

i represents
a single cluster (whether coherent or not is immaterial).

To clarify the logic behind our approach, consider the scenario presented in
[5]. Assume we are given face images of 5 individuals covering variability of illu-
mination and facial expressions — a total of 26 images per individual. The main
data matrix M will contain therefore 130 columns. We wish to select relevant
features (rows of M), however, there are three dimensions of relevancy: (i) per-
son identity, (ii) illumination direction, and (iii) facial expressions. One could
possibly select relevant features for each dimension of relevance and obtain a co-
herent clustering in that dimension. Say we are interested in the person identity
dimension of relevance. In that case the auxiliary matrix W will contain 26 im-
ages of a 6th individual (covering facial expressions and illumination conditions).
Features selected along the dimensions of facial expression or illumination will
induce coherent clusters in the side data, whereas features selected along the
person identity dimension will induce a single cluster (or no structure at all) in
the side data — and low variance of the feature vectors is indicative to single
cluster or no structure at all. In formal notations we have the following:

Let D = diag(var(w>

1 ), ..., var(w>

n )) be a diagonal matrix with the variance
of the rows of W . The low coherence desire over the side data translates to
minimization of α>Dα. Taken together, we have a Rayleigh quotient type of
energy function to maximize:

max
Q,αi

trace(Q>A>

α AαQ)

α>(D + λI)α
=

α>Gα

α>(D + λI)α
(2)

subject to

n∑

i=1

α
2
i = 1, Q

>
Q = I



where G is the matrix defined above whose entries are: Gij = (m>

i mj)m
>

i QQ>mj .
The scalar λ ≥ 0 is user-setabale with the purpose of providing the tradeoff be-
tween the main data and the side data. Large values of λ translates to low weight
for the side information in the feature selection scheme. A vanishing value λ = 0
is admissible provided that none of the variances vanishes (D has no vanishing
entries along its diagonal) — in that case equal weight is given to the two sources
of data. The Q − α with side information algorithm becomes:

Definition 3 (Q−α with Side Information). Let M be an n×q input matrix
with rows m>

1 , ...,m>

n , W be an n × p “side” matrix where the variance of its
rows form a diagonal matrix D, and Q(0) is some orthonormal q × k matrix,

i.e., Q(0)>Q(0) = I. Perform the following steps through a cycle of iterations
with index r = 1, 2, ...

1. Let G(r) be a matrix whose (i, j) components are (m>

i mj)m
>

i Q(r−1)Q(r−1)>mj.
2. Let α(r) be the largest eigenvector of (D + λI)−1G(r).

3. Let A(r) =
∑n

i=1
α

(r)
i mim

>

i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR
−→ Q(r)R(r).

6. Increment index r and go to step 1.

Note the change in step 2 compared to the Q − α algorithm. Since D + λI is a
diagonal positive matrix, its inverse is also positive therefore the positivity of G

is not affected. In other words, the properties of G which induce a positive (and
sparse) solution for the weight vector α (see [19]) are not negatively affected
when G is multiplied with a positive diagonal matrix. If D were not diagonal,
then D−1 would not have been positive and the optimized α values would not
come out positive and sparse.

4 Topographical Model of all Relevant Feature Subsets

We can further extend the notion of “negative variability” embedded in the side
information to a wider perspective of representing a hierarchy of feature subsets
extracted iteratively. The general idea is to treat the weight vector α (which
determines the feature selection as it is a sparse positive vector) as representing
axes of negative variability for subsequent rounds. Let α be the feature selection
solution given by running the Q−α algorithm. We wish to run Q−α again while
looking for an alternative solution along a different dimension of variability We
construct a “side information” matrix D whose diagonal is D = diag(α2

1, ..., α
2
n)

and run the Q− α-with-SI algorithm. The new weight vector α′ will be encour-
aged to have high values in coordinates where α has low values. This is applied
iteratively where in each round Q − α-with-SI is executed with the matrix D

containing the sum of square α values summed over all previous rounds.
Furthermore, the G matrix resulting from each round of the above scheme can

be used for generating a coordinization of the features as a function of the implicit
clustering of the (projected) data. The weight vector α is the largest eigenvector



of G, but as in Multi-Dimensional-Scaling (MDS), the first largest eigenvectors of
G form a coordinate frame. Assume we wish to represent the selected features by
a 1D coordinate. This can be achieved by taking the first two largest eigenvectors
of G thereby each feature is represented by two coordinates. A 1D representation
is made by normalizing the coordinate-pair (i.e., each feature is represented by
a direction in the 2D MDS frame). Given r rounds, each feature is represented
by r coordinates which can be used for visualization and data modeling.

An example of such a topographical map is shown in figure 2. The data
matrix consists of 150 data points each described by 20 features out of which
9 are relevant. The relevant features form two possible solution sets where each
solution induces three clusters of data points. The first set consists of three
features marked by “1,2,3”, while the second set consists of three different fea-
tures marked by “A,B,C”. Three additional features marked by “1A,2B,3C” were
constructed by summing the corresponding feature vectors 1,2,3 and A,B,C, re-
spectively. The remaining 11 (irrelevant) features were constructed by randomly
permuting the entries of the first feature vector. We ran Q−α twice creating for
each feature two coordinates (one per each run) as described above. In addition
to the coordinization of each feature we have associated the corresponding α

value as a measure of “relevancy” of the feature per solution. Taken together,
each feature is represented by a position in the 2D topographical map and a 2D
magnitude represented by an ellipse whose major axes capture the respective
α values. The horizontal axis in Fig. 2(b) is associated with the solution set of
features “1,2,3” and the vertical axis with the solution set “A,B,C”. We see that
the hybrid features 1A,2B,3C, which are relevant to both cluster configurations,
have equal (high) relevancy in both sets (large circles in the topographical map).
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Fig. 2. (a) A synthetic dataset used to demonstrate the creation of a topographical
model of the features (b) The resulting topographical model (see text).

5 Pairwise Side Information

Another possible variant of Q − α-SI is when the side information is given over
pairs of “negative” data points. Consider the (adapted) problem raised by [20] in
the context of distance metric learning for clustering: we are given a set of data
points forming a data matrix M (the “main” data). As side information we are
given pairs of points xi,xj which are known to be part of different clusters. We
wish to select features (coordinates) such that the main data contains maximally



coherent clusters while obeying the side information (i.e., features are selected
such that for each of the “side” pairs (x>

i xj)
2 is small).

We can incorporate the side information by constructing a side matrix B

which functions similarly to the diagonal matrix D we constructed in the previ-
ous sections. The difference here would be that B is not diagonal and therefore
needs to be handled differently. Consider a pair of side points x,y. We wish to
find the weight vector α such that: (x>y)2 = (

∑
i αixiyi)

2 = α>Fα is small,
where Frs = xryrxsys. Denote by F ij the matrix corresponding to the pair of
side points xi,xj and let B =

∑
i

∑
j F ij .

Our goal is to maximize the spectral information coming from the main data
(as before) while minimizing α>Bα. We are back to the same framework as in
Sections 3 and 4 with the difference that B is not diagonal therefore the product
B−1G is not guaranteed to obey the properties necessary for the weight vector α
to come out positive and sparse. Instead, we define an additive energy function:

max
Q,αi

trace(Q>
A

>

α AαQ) − λα
>

Bα (3)

subject to

n∑

i=1

α
2
i = 1, Q

>
Q = I

This energy function is equivalent to α>(G−λB)α where λ tradeoffs the weight
given to the side data. The algorithm follows the steps of the Q − α algorithm
with the difference in step 2: “α(r) is the largest eigenvector of G(r) − λB.”

There is an open issue of showing that α comes out positive and sparse. The
matrix G is “dominantly positive”, i.e., when treated as a random matrix each
entry has a positive mean and thus it can be shown that the probability of a
positive α asymptotes at unity very fast with n [19]. The question what happens
to the mean when one subtracts λB from G. Our working assumption is that the
entries of B are significantly smaller than the corresponding entries of G because
the inner-products of the side points should be small — otherwise they wouldn’t
have been supplied as side points. Empirical studies on this algorithm validate
this assumption and indeed α maintains the positivity and sparsity properties
in our experiments.

6 Experiments

We present below three types of experiments (i) simulations on synthetic data
for the purpose of studying the effects of different weightings of the side data,
(ii) our main running example on the AR face dataset, and (iii) various examples
taken from the UC Irvine repository of data sets. Due to space constraints the
synthetic simulations are given only in the technical report [17].

Face images. Our main running example is the selection of features from
an unlabeled data set of face images taken from the AR dataset [7]. The dataset
consists of 100 people with 26 images per person varying according to lighting
direction and facial expressions. Our task is to select those features which are
relevant for distinguishing between people identities only. The dataset contains



three dimensions of relevancy, and the use of side data is crucial for inhibiting
the unwanted dimensions of facial expressions and lighting variations. Following
[5] we adopted the setting where the main data set contained the images of 5
randomly chosen men (out of the 50 men) totaling 130 images. The side dataset
consisted of the 26 images of a random sixth man. The feature selection process
Q − α − SI looks for coordinates which maximize the cluster coherence of the
main dataset while minimizing the variance of the coordinate vectors of the side
data. As a result, the selected coordinates are relevant for separating among
person identities while being invariant to the other dimensions of variability.
The task of clustering those images into the five correct clusters is hard since the
nuisance structures (such as those generated by variation of lighting and facial
expressions) are far more dominant than the structure of person variability.

The feature values we use as a representation of the image is designed to
capture the relationship between average intensities of neighboring regions. This
suggests the use of a family of basis functions, like the Haar wavelets, which
encode such relationships along different orientations (see [9, 4]). In our imple-
mentation the Haar wavelet transform is run over an image and results in a set of
5227 coefficients at several scales that indicate the response of the wavelets over
the entire image. Many of the coefficients are irrelevant for the task of separating
between facial identities and it is therefore the goal of the Q − α − SI to find
those coefficients that represent the relevant regions.

To quantify the performance of our algorithm in a comparative manner we
used the normalized precision score introduced in [5, 15] which measures the av-
erage purity of the k-Nearest Neighbors for varying values of k. We compared the
performance to four methods: PCA which is the most popular technique for di-
mensionality reduction, Constrained PCA (CPCA) and Oriented PCA (OPCA)
[3], and Sufficient Dimensionality Reduction with Side Information (SDR-SI) [5].
All but the first method (PCA) utilize the same side data as the Q − α − SI .
Also worth noting that all the methods we compared to extract features by
combinations of the original features rather than just select features.

Optimal parameters (dimensionality and λ) for all methods were chosen to
maximize the precision index for a training set. The wavelet decomposition was
not optimal for the other methods and therefore the raw image intensities were
used instead. Reported results were obtained on a separate test set. The entire
procedure was repeated 20 times on randomly chosen subsets of the AR database.

Fig. 3a shows the results averaged over 20 runs. The precision index is nor-
malized between 0 to 1 where 0 is obtained with random neighboring and 1
when all nearest neighbors are of the same class. Note that the precision index
of Q−α−SI is 0.64 which is significantly higher than 0.39 obtained by the next
best method (SDR-SI). Fig. 3(b) shows the resulting α values sorted separately
at each one of the 20 runs. As can be seen those values are extremely sparse -
having only few of the feature weights above a very clear threshold at each run.

Fig. 3(c) illustrates the selected features by the Q−α−SI at each run. This is
done by synthesizing (reconstructing) the images from their wavelet coefficients
weighted by the α values. What is shown per run is the average male image.



Fig. 3(d) shows the projection of random faces from a specific run to the weighted
features space. Each row contains images of one person. In both figures (c,d) some
characteristic features of each individual (beard, dark glasses frame, distinctive
hair line) are highlighted, while the illumination differences are reduced.

Finally, it is worth noting that our attempts to find an appropriate kernel
which will perform as well as the side data approach were unsuccessful. Our
experiments show that the kernel Q−α has significant advantages over Q−α in
general, but selecting an appropriate kernel for the multiple structure paradigm
is a hard problem and is left open (see [11] for work on kernel design).
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Fig. 3. (a) Comparison of the normalized precision index between
CPCA,PCA,OPCA,SDR-IS, and Qα − SI on the AR dataset. (b) Sorted fea-
ture weights (α values) for each of the 20 runs showing the sparsity of the feature
selection (c) The average image of all men in the AR dataset projected to the selected
features for each one of the 20 runs. (d) For a specific run: each row contains the
images of one person projected onto the selected feature space.

UC Irvine Repository Tests. We also applied our method to several
datasets from the UC Irvine repository. On each dataset we applied k-means
clustering on the raw data and on features provided by PCA, OPCA and CPCA.
An accuracy score was computed for each clustering result similarly to what was
done in [20]. The results are shown for the dermatology, segmentation, wine and
ecoli datasets. We also tested the algorithm on the glass, Boston-housing and
arrhythmia datasets where non of the algorithms were significantly better than
chance. The results are summarized in the table below. Each report result is an
average of several experiments where, at turns, each class served as side infor-
mation and the other classes were taken to be the main dataset. The features
were weighted, combined or selected according to the algorithm in question, and
then the data points were clustered by k-means. Each result shown in the table
was averaged over 20 runs. The number of features used for each PCA variants
was the one which gave the best average accuracy. The parameter λ used in the
Q − α with side information was fixed at λ = 0.1.

Dataset raw data Q − α SI PCA CPCA OPCA

dermatology 0.5197 0.8816 0.5197 0.6074 0.8050
ecoli 0.6889 0.7059 0.6953 0.6973 0.5620

segmentation 0.7157 0.7817 0.7208 0.7089 0.7110
wine 0.7280 0.9635 0.7280 0.7280 0.9493



The Q − α-SI performed the best over all the experiments we conducted.
In some of the datasets constrained PCA or oriented PCA performed only
slightly worse, but non of these methods gave good results consistently in all
four datasets. Unlike PCA and its variants, the Q − α algorithm tends to pro-
duce a sparse selection of features, showing a large preference toward a small
number of features. For example, in the wine dataset the α values corresponding
to the features Alcohol and Proline were three times larger than the rest.
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