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Abstract. Computer vision tasks often require the robust fit of a model to some 
data. In a robust fit, two major steps should be taken: i) robustly estimate the 
parameters of a model, and ii) differentiate inliers from outliers. We propose a 
new estimator called Adaptive-Scale Residual Consensus (ASRC). ASRC 
scores a model based on both the residuals of inliers and the corresponding 
scale estimate determined by those inliers. ASRC is very robust to multiple-
structural data containing a high percentage of outliers. Compared with 
RANSAC, ASRC requires no pre-determined inlier threshold as it can 
simultaneously estimate the parameters of a model and the scale of inliers 
belonging to that model. Experiments show that ASRC has better robustness to 
heavily corrupted data than other robust methods. Our experiments address two 
important computer vision tasks: range image segmentation and fundamental 
matrix calculation. However, the range of potential applications is much broader 
than these.  

1   Introduction 

Unavoidably, computer vision data is contaminated (e.g., faulty feature extraction, 
sensor noise, segmentation errors, etc) and it is also likely that the data include 
multiple structures. Considering any particular structure, outliers to that structure can 
be classified into gross outliers and pseudo outliers [16], the latter being data 
belonging to other structures. Computer vision algorithms should be robust to outliers 
including pseudo outliers [6]. Robust methods have been applied to a wide variety of 
tasks such as optical flow calculation [1, 22], range image segmentation [24, 15, 11, 
10, 21], estimating the fundamental matrix [25, 17, 18], etc.  

The breakdown point is the smallest percentage of outliers that can cause the 
estimator to produce arbitrarily large values ([13], pp.9.). Least Squares (LS) has a 
breakdown point of 0%. To improve on LS, robust estimators have been adopted from 
the statistics literature (such as M-estimators [9], LMedS and LTS [13], etc) but they 
tolerate no more than 50% outliers, limiting their suitability [21]. The computer vision 
community has also developed techniques to cope with outliers: e.g., the Hough 
Transform [8], RANSAC [5], RESC [24], MINPRAN [15], MUSE [11], ALKS [10], 
pbM-estimator [2], MSAC and MLESAC [17]. The Hough Transform determines 
consensus for a fit from “votes” in a binned parameter space: however one must 
choose the bin size wisely and, in any case, this technique suffers from high cost 
when the number of parameters is large. Moreover, unlike the other techniques, it 
returns a limited precision result (limited by the bin size). RANSAC requires a user-
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supplied error tolerance. RESC attempts to estimate the residual probability density 
function but the method needs the user to tune many parameters and we have found 
that it overestimates the scale of inliers. MINPRAN assumes that the outliers are 
randomly distributed within a certain range, making MINPRAN less effective in 
extracting multiple structures. MUSE requires a lookup table for the scale estimator 
correction and ALKS is limited in its ability to handle extreme outliers. 

In this paper, we propose (section 0) a new robust estimator: Adaptive-Scale 
Residual Consensus (ASRC), which is based on a robust two-step scale estimator 
(TSSE) (section 0). We apply ASRC to range image segmentation and fundamental 
matrix calculation (section 0) demonstrating that ASRC outperforms other methods.  

2   A Robust Scale Estimator: TSSE 

TSSE [23] is derived from kernel density estimation techniques and the mean 
shift/mean shift valley method. Kernel estimation is a popular method for probability 
density estimation [14]. For n data points {Xi}i=1,…,n in a 1-dimensional residual space, 
the kernel density estimator with kernel K and bandwidth h is  ([14], p.76): 
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is optimum in terms of  minimum mean integrated square error (MISE), satisfying 
various conditions ([19], p.95). Using such a kernel, the mean shift vector Mh(x) is:  
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where Sh(x) is a hypersphere of the radius h, having the volume hdcd (cd is the volume 
of the unit d-dimensional sphere, e.g., c1=2), centered at x, and containing nx data points. 

Marching in the direction of this vector we perform gradient ascent to the peak. 
However, for TSSE we also need to find the valleys. Based upon the Gaussian kernel, 
a saddle-point seeking method was published in [4] but we employ a more simple 
method [20], based upon the Epanechnikov kernel and, for our purposes, in 1-D 
residual space. The basic idea is to define the mean shift valley vector as: 
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In order to avoiding the oscillations, we modify the step size as follows. Let 
{yi}i=1,2… be the sequence of successive locations of the mean shift valley procedure, 
then we have, for each i=1,2…, 

yi+1=yi+ ( )h iMV yτ ⋅  (5) 
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where τ  is a correction factor, and 0<τ  ≤1. If the shift step at yi is too large, it causes 
yi+1 to jump over the local valley and thus oscillate over the valley. This problem can 
be avoided by adjusting  τ  so that MVh(yi)

T MVh(yi+1)>0. 
A crucial issue in implementing the TSSE is the kernel bandwidth choice [19, 3]. A 

simple over-smoothed bandwidth selector can be employed [19].  

1/ 5

2
2

243 ( )ˆ
35 ( )

R K
h S

u K n

 
 =   

 (6) 

where ∫−=
1

1

2)()( ζζ dKKR  and 
1

2
2

1
( ) ( )u K K dζ ζ ζ

−
= ∫ . S is the sample standard deviation.

 

The median [13], MAD [12] or robust k [10] scale estimator can be used to yield 
an initial scale estimate. It is recommended that the bandwidth be set as c ĥ , (0<c<1) 
to avoid over-smoothing ([19], p.62).  
We can now describe the TSSE process:  
1. Use mean shift, with initial center zero, to find the local peak, and then we use 

the mean shift valley to find the valley next to the peak: all in ascending ordered 
absolute residual space.  

2. Estimate the scale of the fit by the median scale estimator [13] on the points 
whose residuals are within the obtained band centered at the local peak. 

Based on TSSE, a new robust estimator (ASRC) will be provided in the next section. 

3   Robust Adaptive-Scale Residual Consensus Estimator 

We assume that when a model is correctly found, two criteria should be satisfied: 
• The (weighted) sum of absolute residuals (r ii ) of the inliers should be small.  
• The scale (S ) (standard variance) of the inliers should be small. 

Given S , the inliers are those that satisfy:  

i r /S  Tϑ ϑ <  (7) 

where T is a threshold. If T is 2.5(1.96), then 98%(95%) percent of a Gaussian 
distribution will be identified as inliers. In our experiments, T=2.5 (except for section 
0 where T=1.96)   
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where ˆ inn
θ is the number of inliers which satisfies equation (7) for the fitted θ̂ .   

No priori knowledge about the scale of inliers is necessary as the proposed method 
yields the estimated parameters of a model and the corresponding scale 
simultaneously. 

The ASRC estimator algorithm is as follows (for fitting models with p parameters): 
1. Randomly choose one p-subset from the data points, estimate the model 

parameters using the p-subset, and calculate the ordered absolute residuals. 
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2. Choose the bandwidth by equation (6). A robust k scale estimator [10] (k=0.2) is 
used to yield a coarse initial scale S0. 

3. Apply TSSE to the absolute sorted residuals to estimate the scale of inliers S1. 
Because the robust k scale estimator is biased for data with multiple structures, 
use S1 in equation (6) to apply TSSE again for the final scale of inliers S2. 

4. Validate the valley. The probability density at the local peak )(ˆ peakf  and local 

valley )(ˆ valleyf  are obtained by equation (1). Let )(ˆ valleyf / )(ˆ peakf = λ (where 
1> λ ≥0). Because the inliers are assumed having a Gaussian-like distribution, the 
valley is not sufficiently deep when λ is too large (say, larger than 0.8). If the 
valley is sufficiently deep, go to step (5); otherwise go to step (1). 

5. Calculate the score, i.e., the objective function of the ASRC estimator. 
6. Repeat step (1) to step (5) m times. Finally, output the parameters and the scale S2 

with the highest score.  
Let ε be the fraction of outliers, P the probability that at least one of the m p-tuples 

is “clean”; then one can determine m by  ([13], pp.198): 
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In [23], we propose a robust Adaptive Scale Sample Consensus (ASSC) estimator:  
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From equation (8) and (10), we can see that the difference between ASRC and our 
recently proposed ASSC [23] is: in ASSC, all inliers are treated as the same, i.e., each 
inlier contributes 1 to the object function of ASSC. However, in ASRC, the sizes of 
the residuals of inliers are influential.  

4   Experiments 

4.1   Synthetic Examples on Line Fitting and Plane Fitting 

The proposed method is compared with LMedS, RESC, ALKS, and our recently 
proposed method: ASSC. We generated four examples: roof, ‘F’-figure, one-step, and 
three-step linear signals (the signals are in the magenta color), each with a total of 500 
data points, corrupted by Gaussian noise with zero mean and standard variance σ. 
Among the 500 data points, α data points were randomly distributed in the range of 
(0, 100). The i’th structure has ni data points: (a) Roof: x:(0-50), y=2x, n1=65; x:(50-
100), y=200-2x, n2=50; α=385; σ=1. (b) F-figure: x:(25-75), y=85, n1=40; x:(25-75), 
y=70, n2=35; x=25, y:(30-85), n3=35; α=390; σ=1.2. (c) Step: x:(0-50), y=75, n1=45; 
x:(50-100), y=60, n2=45; α=410; σ=1. (d) Three-step: x:(0-25), y=20, n1=45; x:(25-
50), y=40, n2=30; x:(50-75), y=60, n3=30; x:(75-100), y=80, n4=30; α=365; σ=1. 

From Fig. 1 we can see that ASRC correctly fits all four signals. LMedS (50% 
breakdown point) failed to fit all four. Although ALKS is sometimes more robust, it 
also failed. RESC and ASSC succeeded in the roof signal (87% outliers), however, 
they both failed in the other three cases. It should be emphasized that both the  
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Fig. 1. Comparing the performance of five methods: (a) fitting a roof with a total of 87% 
outliers; (b) fitting F-figure with a total of 92% outliers; (c) fitting a step with a total of 91% 
outliers; (d) fitting three-step with a total of 91% outliers. 
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(d) (e) (f) 

Fig. 2. (a) the 3D data with 80% outliers; the extracted results by (b) ASRC; (c) ASSC; (d) 
RESC; (e) ALKS; and (f) LMedS. 

bandwidth choice and the scale estimation in ASRC are data-driven: an improvement 
over RANSAC where the user sets a priori scale-related error bound. 

Next, two 3D signals were used: 500 data points and three planar structures with 
each plane containing n points corrupted by Gaussian noise with standard variance σ 
(=3.0); 500-3n points are randomly distributed. In the first example, n =100; in the 
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second n = 65. We repeat: (1) estimate the parameters and scale of a plane (2) extract 
the inliers and remove them from the data set - until all planes are extracted. The red 
circles denote the first plane extracted; green stars the second; and blue squares the 
third (Fig. 2 and Fig. 3). 

From Fig. 2 (d) and (e), we can see that RESC and ALKS, which claim to be 
robust to data with more than 50% outliers, failed to extract all the three planes. This 
is because the estimated scales (by RESC and ALKS) for the first plane were wrong, 
which caused these two methods to fail to fit the second and third planes. Because the 
LMedS (in Fig. 2 (d)) has only a 50% breakdown point, it completely failed to fit data 
with such high contamination — 80% outliers. The proposed method and ASSC 
yielded the best results (Fig. 2 (b) and (c)). Similarly, in the second 3D experiment 
(Fig. 3), RESC, ALKS and LMedS completely broke down. ASSC, although it 
correctly fitted the first plane, wrongly fitted the second and the third planes. Only the 
proposed method correctly fitted and extracted all three planes (Fig. 3 (b)).  
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Fig. 3. (a) the 3D data with 87% outliers; the extracted results by (b) ASRC; (c) ASSC; (d) 
RESC; (e) ALKS; and (f) LMedS. 

4.2   Range Image Segmentation 

Many robust estimators have been employed to segment range images ([24, 11, 10, 
21], etc.). Here, we use the ABW range images (obtained from http://marathon.csee. 
usf.edu/seg-comp/SegComp.html.) The images have 512x512 pixels and contain 
planar structures. We employ a hierarchal approach with four levels [21]. The bottom 
level of the hierarchy contains 64x64 pixels that are obtained by using regular 
sampling on the original image. The top level of the hierarchy is the original image. 
We begin with bottom level. In each level of the hierarchy, we: 
(1) Apply the ASRC estimator to obtain the parameters of plane and the scale of 

inliers. If the number of inliers is less than a threshold, go to step (6). 
(2) Use the normals to the planes to validate the inliers obtained in step (1). When 

the angle between the normal of the data point that has been classified as an 
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inlier, and the normal of the estimated plane, is less than a threshold value, the 
data point is accepted. Otherwise, the data point is rejected and will be left for 
further processing. If the number of the validated inliers is small, go to step (6). 

(3) Fill in the holes, which may appear due to sensor noise, inside the maximum 
connected component (CC) from the validated inliers.  

(4) In the top hierarchy, assign a label to the points corresponding to the CC from 
step (3) and remove these points from the data set. 

(5) If a point is unlabelled and it is not a jump edge point, the point is a "left-over" 
point. After collecting all these, use the CC algorithm to get the maximum CC. 
If the number data points of the maximum CC of "left-over" points is smaller 
than a threshold, go to step (6); otherwise, sample the maximum CC obtained in 
this step, then go to step (1). 

(6) Terminate the processing in the current level of the hierarchy and go to the 
higher-level hierarchy until the top of the hierarchy. 

 

  
(a1) (a2) (a3) 

  

(b1) (b2) (b3) 

Fig. 4. Segmentation of ABW range images from the USF database. (a1, b1) Range image with
26214 random noise points; (a2, b2) The ground truth results for the corresponding range
images without adding random noise; (a3, b3) Segmentation result by ASRC. 

 
The proposed range image segmentation method is very robust to noise. We added 

26214 random noise points to the range images (in Fig. 4) taken from the USF ABW 
range image database (“test 11” and “test 3”). No separate noise filtering is 
performed. All of the main surfaces were recovered by our method.  
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(a) (b) (c) 

  

(d) (e) (f) 

Fig. 5. Comparison of the segmentation results for ABW range image (train 7). (a) Range
image; (b) The result of ground truth; (c) The result by the ASRC; (d) The result by the UB; (e)
The result by the WSU; (f) The result by the USF. 

 
We also compared our results with those of three state-of-the-art approaches of 

USF, WSU, and UB [7]. Fig. 5 (c-f), showing the results obtained by the four 
methods should be compared with the results of the ground truth (Fig. 5 (b)). 

From Fig. 5, we can see that the proposed method achieved the best results: all 
surfaces are recovered and the segmented surfaces are relatively “clean”. In 
comparison, some boundaries on the junction of the segmented patch by the UB were 
seriously distorted. The WSU and USF results contained many noisy points and WSU 
over segmented one surface. The proposed method takes about 1-2 minutes (on an 
AMD800MHz personal computer in C interfaced with MATLAB language). 

4.3   Fundamental Matrix Estimation 

Several robust estimators, such as M-estimators, LMedS, RANSAC, MSAC and 
MLESAC, have been applied in estimating the fundamental matrix [17]. However, 
M-estimators and the LMedS have a low breakdown point, RANSAC and MSAC 
need a- priori knowledge about the scale of inliers. MLESAC performs similar to 
MSAC.  

The proposed ASRC can tolerate more than 50% outliers; and no priori scale 
information about inliers is required. 
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Let {xi,} and {xi’} (for i=1,…,n) to be a set of homogeneous image points viewed 
in image 1 and image 2. We have the following constraints for the fundamental 
matrix F: 

' 0 det[ ] 0T
i ix Fx and F= =  (11) 

We employ the 7 points algorithm [17] to solve for candidate fits using Simpson 
distance - for the i’th correspondence ri using Simpson distance is:  
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Fig. 6. An experimental comparison of estimating fundamental matrix for data with 60% 
outliers. (a) The distributions of inliers and outliers; (b) The distribution of true inliers; The
inliers obtained by (c) ASRC; (d) MSAC; (e) RANSAC; and (f) LMedS. 

Table 1. An experimental comparison for data with 60% outliers. 

 % of inliers correctly 
classified 

% of outliers correctly 
classified 

Standard variance 
of inliers 

Ground Truth 100.00 100.00 0.9025 
ASRC 95.83 100.00 0.8733 
MSAC 100.00 65.56 41.5841 

RANSAC 100.00 0.56 206.4936 
LMedS 100.00 60.00 81.1679 

 
We generated 300 matches including 120 point pairs of inliers with unit Gaussian 

variance (matches in blue color in Fig. 6(a)) and 160 point pairs of random outliers 
(matches in cyan color in Fig. 6(a)). Thus the outliers occupy 60% of the whole data. 
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The scale information about inliers is usually not available, thus, the median scale 
estimator, as recommended in [17],  is used for RANSAC and MSAC to yield an 
initial scale estimate. The number of random samples is set to 10000. From Fig. 6 and 
Table 1, we can see that our method yields the best result. 
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Fig. 7. A comparison of correctly identified percentage of inliers (a), outliers (b), and the
comparison of standard variance of residuals of inliers (c).  

Table 2. Experimental results on two frames of the Corridor sequence. 

 Number of inliers Mean error of inliers Standard variance of inliers 

ASRC 269 –0.0233 0.3676 
MSAC 567 –0.9132 7.5134 

RANSAC 571 –1.2034 8.0816 
LMedS 571 –1.1226 8.3915 

Next, we investigate the behavior for data involving different percentages of 
outliers (PO). We generated the data (in total 300 correspondences) similar to that in 
Fig. 6. The percentage of outliers varies from 5% to 70% in increments of 5%. The 
experiments were repeated 100 times for each percentage of outliers. If a method is 
robust enough, it should resist the influence of outliers and the correctly identified 
percentages of inliers should be around 95% (T is set 1.96 in equation (7)) and the 
standard variance of inliers should be near to 1.0 despite of the percentages of 
outliers. 

We set the number of random samples, m, to be: m =1000 when PO≤40; 10000 
when 40<PO≤60; and 30000 when PO>60 to ensure a high probability of success. 

From Fig. 7, we can see that MSAC, RANSAC, and LMedS all break down when 
data involve more than 50% outliers. The standard variance of inliers by ASRC is the 
smallest when PO >50%. Note: ASRC succeeds to find the inliers and outliers even 
when outliers occupied 70% of the whole data.  

Next, two frames of the Corridor sequence (bt.000 and bt.004), were obtained from 
http://www.robots.ox.ac.uk/~vgg/data/ (Fig. 8(a) and (b)). Fig. 8(c) shows the 
matches involving 800 point pairs in total. The inliers (269 correspondences) obtained 
by the proposed method are shown in Fig. 8(d). The epipolar lines and epipole using 
the estimated fundamental matrix by ASRC are shown in Fig. 8(e) and (f). In Fig. 8(e) 
and (f), we draw 30 epipolar lines. We can see that most of the point pairs correspond 
to the same feature in the two images except for one case: the 30th point pair, which 
is pointed out by the two arrows. The reason is that the residual of the point pair 
corresponding to the estimated fundamental matrix is small: the epipolar constraint is 
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a weak constraint and ANY method enforcing ONLY the epipolar constraint scores 
this match highly. Because the camera matrices of the two frames are available, we 
can obtain the ground truth fundamental matrix and thus evaluate the errors (Table 2). 
We can see that ASRC performs the best.  

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 8. (a)(b) image pair (c) matches (d) inliers by ASRC; (e)(f) epipolar geometry. 

5   Conclusion 

The proposed ASRC method exploits both the residuals of inliers and the 
corresponding scale estimate using those inliers, in determining the merit of model fit. 
This estimator is very robust to multiple-structural data and can tolerate more than 
80% outliers The ASRC estimator is compared to those of several popular and 
recently proposed robust estimators: LMedS, RANSAC, MSAC, RESC, ALKS, and 
ASSC, showing that the ASRC estimator achieves better results (Readers may 
download the paper from http://www-personal.monash.edu.au/~hanzi, containing the 
corresponding colors figure/images, to understand the results better). Recently, a 
“pbM-estimator”[2], also using kernel density estimation was announced. However, 
this employs projection pursuit and orthogonal regression. In contrast, we consider the 
density distribution of the mode in the residual space. 
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