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Abstract. We introduce a novel approach to the cerebral white mat-
ter connectivity mapping from diffusion tensor MRI. DT-MRI is the
unique non-invasive technique capable of probing and quantifying the
anisotropic diffusion of water molecules in biological tissues. We address
the problem of consistent neural fibers reconstruction in areas of com-
plex diffusion profiles with potentially multiple fibers orientations. Our
method relies on a global modelization of the acquired MRI volume as a
Riemannian manifold M and proceeds in 4 majors steps: First, we estab-
lish the link between Brownian motion and diffusion MRI by using the
Laplace-Beltrami operator on M . We then expose how the sole knowl-
edge of the diffusion properties of water molecules on M is sufficient to
infer its geometry. There exists a direct mapping between the diffusion
tensor and the metric of M . Next, having access to that metric, we pro-
pose a novel level set formulation scheme to approximate the distance
function related to a radial Brownian motion on M . Finally, a rigorous
numerical scheme using the exponential map is derived to estimate the
geodesics of M , seen as the diffusion paths of water molecules. Numerical
experimentations conducted on synthetic and real diffusion MRI datasets
illustrate the potentialities of this global approach.

1 Introduction

Diffusion imaging is a magnetic resonance imaging technique introduced in the
mid 1980s [1], [2] which provides a very sensitive probe of biological tissues ar-
chitecture. Although this method suffered, in its very first years, from severe
technical constraints such as acquisition time or motion sensitivity, it is now
taking an increasingly important place with new acquisition modalities such as
ultrafast echo-planar methods. In order to understand the neural fibers bundle
architecture, anatomists used to perform cerebral dissection, strychnine or chem-
ical markers neuronography [3]. As of today, diffusion MRI is the unique non-
invasive technique capable of probing and quantifying the anisotropic diffusion
of water molecules in tissues like brain or muscles. As we will see in the following,
the diffusion phenomenon is a macroscopic physical process resulting from the
permanent Brownian motion of molecules and shows how molecules tend to move
from low to high concentration areas over distances of about 10 to 15 µm during
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typical times of 50 to 100 ms. The key concept that is of primary importance
for diffusion imaging is that diffusion in biological tissues reflects their structure
and their architecture at a microscopic scale. For instance, Brownian motion is
highly influenced in tissues such as cerebral white matter or the annulus fibrosus
of inter-vertebral discs. Measuring, at each voxel, that very same motion along
a number of sampling directions (at least 6, up to several hundreds) provides an
exquisite insight into the local orientation of fibers and is known as diffusion-
weighted imaging. In 1994, Basser et al. [4] proposed the model, now widely
used, of the diffusion tensor featuring an analytic means to precisely describe
the three-dimensional nature of anisotropy in tissues.

Numerous works have already addressed the problem of the estimation and
regularization of these tensor fields. References can be found in [5], [6], [7], [8], [9].
Motivated by the potentially dramatic improvements that knowledge of anatom-
ical connectivity would bring into the understanding of functional coupling be-
tween cortical regions [10], the study of neurodegenerative diseases, neurosurgery
planning or tumor growth quantification, various methods have been proposed
to tackle the issue of cerebral connectivity mapping. Local approaches based
on line propagation techniques [11], [12] provide fast algorithms and have been
augmented to incorporate some natural constraints such as regularity, stochas-
tic behavior and even local non-Gaussianity ([13], [14], [15], [16], [17], [18], [19],
[20]). All these efforts aim to overcome the intrinsic ambiguity of the diffu-
sion tensor related to white matter partial volume effects. Bearing in mind this
limitation, they enable us to generate relatively accurate models of the human
brain macroscopic three-dimensional architectures. The tensor indeed encapsu-
lates the averaged diffusion properties of water molecules inside a voxel whose
typical extents vary from 1 to 3 mm. At this resolution, the contribution to
the measured anisotropy of a voxel is very likely to come from different fibers
bundles presenting different orientations. This voxel-wise homogeneous Gaussian
model thus limits our capacity to resolve multiple fibers orientations since local
tractography becomes unstable when crossing artificially isotropic regions char-
acterized by a planar or spherical diffusion profile [8]. On the other side, new
diffusion imaging methods have been recently introduced in an attempt to better
describe the complexity of water motion but at the cost of increased acquisition
times. This is a case of high angular diffusion weighted imaging [21], [22] where
the variance of the signal could give important information on the multimodal
aspect of diffusion. Diffusion Spectrum Imaging [23], [24] provides, at each voxel,
an estimation of the probability density function of water molecules and has been
shown to be a particularly accurate means to access the whole complexity of the
diffusion process in biological tissues. In favor of these promising modalities, par-
allel MRI [25] will reduce the acquisition time in a near future and thus permit
high resolution imaging.

More global algorithms such as [26] have been proposed to better handle the
situations of false planar or spherical tensors (with fibers crossings) and to pro-
pose some sort of likelihood of connection. In [27], the authors make use of the
major eigenvector field and in [28] the full diffusion tensor provides the metric of
a Riemannian manifold but this was not exploited to propose intrinsic schemes.
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We derive a novel approach to white matter analysis, through the use of stochas-
tic processes and differential geometry which yield physically motivated distance
maps in the brain, seen as a 3-manifold and thus the ability to compute intrin-
sic geodesics in the white matter. Our goal is to recast the challenging task of
connectivity mapping into the natural framework of Riemannian differential ge-
ometry. Section 2 starts from the very definition of Brownian motion and show
its link to the diffusion MRI signal for linear spaces in terms of its probability
density function. Generalization to manifolds involves the introduction of the
infinitesimal generator of the Brownian motion. We then solve, in Section 3, the
problem of computing the intrinsic distance function from a starting point x0 in
the white matter understood as a manifold. The key idea is that the geometry
of the manifold M has a deep impact on the behavior of Brownian motion. We
claim that the diffusion tensor can be used to infer geodesic paths on M that
coincide with neural tracts since its inverse defines the metric of M . Practically,
this means that, being given any subset of voxels in the white matter, we will
be able to compute paths most likely followed by water molecules to reach x0.
As opposed to many methods developed to perform tractography, we can now
exhibit a bunch of fibers starting from a single point x0 and reaching poten-
tially large areas of the brain. Efficient numerical implementation is non-trivial
and described in Section 4. Results, advantages and drawbacks of the method
are presented and discussed in Section 5. We conclude and present potential
extensions in Section 6.

2 From Molecular Diffusion to Anatomical Connectivity

2.1 The Diffusion MRI Signal

Diffusion MRI provides the only non-invasive means to characterize molecular
displacements, hence its success in physics and chemistry. To measure diffusion
in several directions, the Stejskal-Tanner imaging sequence is widely used. It
basically relies on two strong gradient pulses positioned before and after the
refocusing 180 degrees pulse of a classical spin echo sequence to control the
diffusion weighting. For each slice, at least 6 independent gradient directions
and 1 unweighted image are acquired to be able to estimate the diffusion tensor
D and probe potential changes of location of water molecules due to Brownian
motion. By performing one measurement without diffusion weighting S0 and
one (S) with a sensitizing gradient g, the diffusion coefficient D along g can be
estimated through the relation:

S = S0exp(−γ2δ2 (∆− δ/3) |g|2D) (1)

where δ is the duration of the gradient pulses, ∆ the time between two gradient
pulses and γ the gyromagnetic ratio of the hydrogen proton.

2.2 Brownian Motion and Anisotropic Molecular Diffusion

We recall the definition of a Brownian motion in Euclidean space, the simplest
Markov process whose stochastic behavior is entirely determined by its initial
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distribution µ and its transition mechanism. Transitions are described by a prob-
ability density function p or an infinitesimal generator L. In linear homogeneous
spaces, p is easily derived as the minimal fundamental solution associated with
L (solution of equation 2). On manifolds, constructing this solution is a tough
task, but for our problem, we only need to characterize L. Further details can
be found in [29]. We denote by Vd = C([0,∞[→ R

d) the set of d-dimensional
continuous functions and by B(Vd) the topological σ-algebra on Vd. Then,

Definition 1. A d-dimensional continuous process X is a Vd-valued random
variable on a probability space (Ω,F ,P)

By introducing the time t ∈ [0,∞[ such that ∀v ∈ Vd, v(t) ∈ R
d, a time-indexed

collection {Xt(ω)}, ∀ω ∈ Ω generates a d-dimensional continuous process if Xt

is continuous with probability one. A Brownian motion is characterized by:

Definition 2. With µ a probability on (Rd,B(Rd)), Xt0 , Xt1 − Xt0 , ..., Xtm
−

Xtm−1 mutually independent with initial distribution specified by µ and Gaussian
distribution for subsequent times (ti are nonnegative and increasing), a process
Xt is called a d-dimensional Brownian motion with initial distribution µ.

Xt describing the position of water molecules, we now would like to under-
stand how the diffusion behavior of these molecules is related to the underlying
molecular hydrodynamics. Diffusion tensor, as thermal or electrical conductivity
tensors, belongs to the broader class of general effective property tensors and
is defined as the proportionality term between an averaged generalized inten-
sity B and an averaged generalized flux F . In our particular case of interest
B is the concentration gradient ∇C and F is the mass flux J such that Fick’s
law holds: J = −D∇C. By considering the conservation of mass, the general
diffusion equation is readily obtained:

∂C

∂t
= ∇.(D∇C) = LC (2)

In anisotropic cerebral tissues, water molecules motion varies in direction de-
pending on obstacles such as axonal membranes. The positive definite order-2
tensor D has been related [30] to the root mean square of the diffusion distance
by D = 1

6t 〈(x−x0)(x−x0)T 〉 (〈.〉 denotes an ensemble average). This is directly
related to the minimal fundamental solution of equation 2 for an unbounded
anisotropic homogeneous medium and the regular Laplacian with initial distri-
bution (obeying the same law as concentration) limt→0 p(x|x0, t) = δ(x− x0):

p(x|x0, t) =
(

1
4π|D|t

)(d/2)

exp
(−(x− x0)T D−1(x− x0)

4t

)

Also known as the propagator, it describes the conditional probability to find
a molecule, initially at position x0, at x after a time interval t. All the above
concepts find their counterparts when moving from linear spaces, such as R

d,
to Riemannian manifolds. Explicit derivation of p is non-trivial in that case and
the Laplace-Beltrami operator, well known in image analysis [31], will be of
particular importance to define L.
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3 White Matter as a Riemannian Manifold

3.1 Geometry of a Manifold from Diffusion Processes

We now want to characterize the anisotropic diffusion of water molecules in
the white matter exclusively in term of an appropriate infinitesimal generator
L. Brownian motions are characterized by their Markovian property and the
continuity of their trajectories. They have been, so far, generated from their
initial distribution µ and their transition density function p, but they are char-
acterized in terms of L-diffusion processes. Without any further detail, we claim
that under some technical hypothesis on L (with its domain of definition D(L))
and on the Brownian motion Xt, it is possible to define an L-diffusion process
on a Riemannian manifold M from the d-dimensional stochastic process Xt.
We refer the interested reader to [29]. We focus, as in [32], on the case of a
diffusion process with time-independent infinitesimal generator L, assumed to
be smooth and non-degenerate elliptic. We introduce ∆M the Laplace-Beltrami
differential operator such that, for a function f on a Riemannian manifold M ,
∆Mf = div(gradf). In local coordinates x1, x2, ..., xd, the Riemannian met-
ric writes in the form ds2 = gijdxidxj and the Laplace-Beltrami operator be-
comes

∆Mf(x) =
1√
G

∂

∂xj

(√
Ggij ∂f

∂xi

)
= gij(x)

∂2f

∂xi∂xj
(x) + bi(x)

∂f

∂xi
(x)

where G is the determinant of the matrix {gij} and {gij} its inverse. More-
over,

bi =
1√
G

∂(
√
Ggij)
∂xj

= gjkΓ i
jk

where Γ i
jk are the Christoffel symbols of the metric {gij}. ∆M is second order,

strictly elliptic. At that point of our analysis, it turns out that constructing
the infinitesimal generator L of our diffusion process boils down to (see [33]):

Definition 3. The operator L is said to be an intrinsic Laplacian generating a
Brownian motion on M if L = 1

2∆M .

Thus, for a smooth and non-degenerate elliptic differential operator on M of the
form: L = 1

2d
ij(x) ∂2

∂xi∂xj
we have the

Lemma 1. If (dij(x))i,j=1...d denotes the inverse matrix of (dij(x))i,j=1...d, then
g = dijdxidxj defines a Riemannian metric g on M .

Conclusion: In the context of diffusion tensor imaging, this is of great impor-
tance for the following since it means that the diffusion tensor D estimated at
each voxel actually defines, after inversion, the metric of the manifold. We have
made the link between the diffusion tensor data and the white matter manifold
geometry through the properties of Brownian motion.
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3.2 From Radial Processes to Neural Fibers Recovery

We can now measure in the intrinsic space of the white matter. The fundamental
idea of what follows consists of the hypothesis that water molecules starting
at a given point x0 on M , under Brownian motion, will potentially reach any
point on M through a unique geodesic. The sole knowledge of the metric g will
enable us to actually compute those geodesics on the manifold inferred from the
Laplace-Beltrami operator. Considering paths of Brownian motion (ie. fibers
in the white matter) as the characteristics lines of the differential operator L
we can easily extend the concept of radial process for that type of stochastic
motion on a Riemannian manifold M [34]. Let us fix a reference point x0 ∈ M
and let r(x) = φ(x0, x) be the Riemannian distance between x and x0. Then
we define the radial process rt = r(Xt). The function r : M → R

+ has a well
behaved singularity at the origin. We make the assumption thatM is geodesically
complete and recall the notion of exponential map which will be crucial for the
numerical computation of neural fibers. We denote by ce the geodesic with initial
condition ce(0) = x and c′e(0) = e (e ∈ TxM). We denote by E ⊂ TM the set of
vectors e such that ce(1) is defined. It is an open subset of the tangent bundle
TM containing the null vectors 0x ∈ TxM .

Definition 4. The exponential map exp : E ⊂ TM → M is defined by exp(e) =
ce(1). We denote by expx its restriction to one tangent space TxM .

Hence, in particular, for each unit vector e ∈ Tx0M , there is a unique geodesic
ce : [0,∞[→ M such that c′e(x0) = e and the exponential map gives ce(t) =
expx0

(te). For small time steps t, the geodesics ce[0, t[ is the unique distance
minimizing geodesic between its endpoints. We need one more notion to conclude
this section: the cutlocus of x0,Cutx0, which will help us to characterize the
distance function r. It is nothing but the locus of points where the geodesics
starting orthonormally from x0 stop being optimal for the distance. The radial
function r(x) = φ(x0, x) is smooth on M/Cutx0 and we have |gradφ(x)| = 1

Conclusion: We have expressed the distance function on M . The objectives
of the following section will be to propose accurate algorithms to compute this
function φ everywhere on M and then to use it to estimate geodesics (Brownian
paths) on this manifold (the brain white matter).

4 Intrinsic Distance Function, Geodesics

4.1 A Level Set Formulation for the Intrinsic Distance Function

We are now concerned with the effective computation of the distance function
φ from a closed, non-empty subset K of the 3-dimensional, smooth, connected
and complete Riemannian manifold (M, g). In the remaining, K will actually
be restricted to the single point x0, origin of a Brownian motion. We will nev-
ertheless formulate everything in term of K since considering the distance to a
larger subset of M will be of interest for future work. Let us now further discuss
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the notion of distance function on a Riemannian manifold. Given two points
x, y ∈ M , we consider all the piecewise differentiable curves joining x to y. Since
M is connected, by the Hopf-Rinow theorem, such curves do exist and

Definition 5. The distance φ(x, y) is defined as the infimum of the lengths of
the C1 curves starting at x and ending at y.

Corollary 1. If x0 ∈ M , the function r : M → R given by r(x) = φ(x, x0) is
continuous on M but in general it is not everywhere differentiable.

We consider a general Hamilton-Jacobi partial differential equation with Dirich-
let boundary conditions

{
H(x,Dφ(x)) = 0 in M \K
φ(x) = φ0(x) when x ∈ K

where φ0 is a continuous real function on K and the Hamiltonian H : M ×
T �M → R is a continuous real function on the cotangent bundle. We make the
assumption that H(x, .) is convex and we set φ0(x) = 0 ∀x ∈ K.
We denote by |v| the magnitude of a vector v of TM , defined as

√
g(v, v). In

matrix notation, by forming G = {gij} the metric tensor, this writes
√
vT Gv.

Then, by setting H(x, p) = |p| − 1, we will work on the following theorem (for
details on viscosity solutions on a Riemannian manifold, we refer to [35])

Theorem 1. The distance function φ is the unique viscosity solution of the
Hamilton-Jacobi problem

{ |gradφ| = 1 in M \K
φ(x) = 0 when x ∈ K

(3)

in the class of bounded uniformly continuous functions.

This is the well-known eikonal equation on the Riemannian manifold (M, g).
The viscosity solution φ at x ∈ M is the minimum time t ≥ 0 for any curve γ to
reach a point γ(t) ∈ K starting at x with the conditions γ(0) = 0 and |dγ

dt | ≤ 1.
φ is the value function of the minimum arrival time problem. This will enable
us to solve equation 3 as a dynamic problem and thus to take advantage of the
great flexibility of Level Set methods. On the basis of [36], [37], [38] and [39], we
reformulate equation 3 by considering φ as the zero level set of a function ψ and
requiring that the evolution of ψ generates φ so that

ψ(x, t) = 0 ⇔ t = φ(x) (4)

Osher ([36]) showed by using Theorem 5.2 from [39] that, under the hypothesis
that the Hamiltonian H is independent of φ, the level set generated by 4 is a
viscosity solution of 3 if ψ is the viscosity solution of

{
ψt + F (t, x,Dψ(t, x)) = 0 ∀t > 0
ψ(x, 0) = ψ0(x)

(5)
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provided that F > 0 and does not change sign. This is typically the case for our
anisotropic eikonal equation where the anisotropy directly arises from the mani-
fold topology and not from the classical speed function of initial value problems
(which equals 1 everywhere here). To find our solution, all we need to do is thus
to evolve ψ(x, t) while tracking, for all x, the time t when it changes sign. Now
we have to solve 5 with

F (t, x,Dψ) = H(t, x,Dψ) + 1 = |gradψ|

We first recall that for any function f ∈ F, where F denotes the ring of smooth
functions onM , the metric tensor G and its inverse define isomorphisms between
vectors (in TM) and 1-forms (in T �M). In particular, the gradient operator is
defined as gradf = G−1df where df denotes the first-order differential of f . It
directly follows that

|gradψ| =
√
g(gradψ, gradψ) =

(
gij

∂ψ

∂xl
gli ∂ψ

∂xk
gkj

)1/2

=
(
∂ψ

∂xk

∂ψ

∂xl
gkl

)1/2

and we now present the numerical schemes used to estimate geodesics as well as
the viscosity solution of

ψt + |gradψ| = 0 (6)

4.2 Numerical Scheme for the Distance Function

Numerical approximation of the hyperbolic term in 6 is now carefully reviewed
on the well-known basis of available schemes for hyperbolic conservative laws.
We seek a three-dimensional numerical flux approximating the continuous flux
|gradψ|2 and that is consistent and monotone so that it satisfies the usual jump
and entropy conditions and converges towards the unique viscosity solution of
interest. References can be found in [40]. On the basis of the Engquist-Osher
flux [37] and the approach by Kimmel-Amir-Bruckstein for level set distance
computation on 2D manifolds [41], we propose the following numerical flux for
our quadratic Hamiltonian dψT G−1dψ:

|gradψ|2 =
3∑

i=1

gii(max(D−
xi
ψ, 0)2 + min(D+

xi
ψ, 0)2) +

3∑
i,j=1

i�=j

gijminmod(D+
xi
ψ,D−

xi
ψ)minmod(D+

xj
ψ,D−

xj
ψ)

where the D±
xi
ψ are the forward/backward approximations of the gradient in xi.

Higher order implementation has also been done by using WENO schemes in
order to increase the accuracy of the method. They consist of a convex combina-
tion of nth (we take n = 5) order polynomial approximation of derivatives [42].
A classical narrow band implementation is used to speed up the computations.
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4.3 Numerical Scheme for the Geodesics Estimation

We finally derive an intrinsic method for geodesics computation in order to
estimate paths of diffusion onM eventually corresponding to neural fibers tracts.
Geodesics are indeed the integral curves of the intrinsic distance function and are
classically obtained by back-propagating in its gradient directions from a given
point x to the source x0. Our problem of interest consists of starting from a given
voxel of the white matter and of computing the optimal pathway in term of the
distance φ until x0 is reached. We propose to take into account the geometry
of the manifold during this integration step by making use of the exponential
map. If the geodesic c(s) is the parameterized path c(s) = (c1(s), ..., cd(s)) which
satisfies the differential equation

d2ci
ds2

= −Γ i
jk(c,

dc

ds
)
dcj
ds

dck
ds

(7)

where Γ i
jk are the Christoffel symbols of the second kind defined as Γ i

jk =
1
2g

il (∂gkl/∂xj + ∂gjl/∂xk − ∂gjk/∂xl). Equation 7 allows us to write exp in lo-
cal coordinates around a point x ∈ M as

ci(exp(X)) = Xi − 1
2
Γ i

jkXjXk + O(|X|3) ∀i = 1, ..., d

where X will be identified with the gradient of the distance function at x and
derivatives of the metric are estimated by appropriate finite differences schemes.
This leads to a much more consistent integration scheme on M .

5 Evaluation on Synthetic and Real Datasets

We have experimented with line propagation local methods which only produce
macroscopically satisfying results. With trilinear interpolation of the tensor field
and a 4th order Runge Kutta integration scheme, we used the advection-diffusion
method [13] and obtained the results on Figure 1. Our global approach is actually
more concerned to resolve local ambiguities due to isotropic tensors. We consider
synthetic and real data1 to quantify the quality of the estimated distance func-
tions with upwind and WENO5 finite differences schemes. Our criterion is the
a posteriori evaluated map |gradφ| which must be equal to 1 everywhere ex-
cept at the origin x0. As shown on Figure 2 [left], synthetic data corresponds
to an anisotropic non-homogeneous medium for which the diffusion paths de-
scribe three (independently homogeneous) intersecting cylinders oriented along
the x, y and z axis. It results perfectly isotropic tensors at the intersection of the
three cylinders, surrounded by planar tensors in the area where only two cylin-
ders cross each others. Though simple, it is a typical configuration where local
methods become unreliable. x0 denotes the origin of the distance function whose
1 The authors would like to thank J.F. Mangin and J.B Poline, CEA-SHFJ/Orsay,

France for providing us with the data
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Fig. 1. Neural tracts estimated by the advection-diffusion based propagation method

Fig. 2. [left]: Synthetic tensor field (partial), [center]: Associated distance function
[right]: Real diffusion tensor MRI (RGB mapping of the major eigenvector)

Table 1. Statistics on |gradφ| for synthetic and real diffusion tensor MRI data

DataSet Scheme Mean Std. Dev Maximum
Synthetic Upwind 0.9854 0.123657 4.50625
Synthetic WENO5 0.977078 0.116855 2.0871
DT-MRI Upwind 0.994332 0.116326 4.80079
DT-MRI WENO5 0.973351 0.110364 3.72567

estimation with the level set scheme proposed in the previous section exhibits
very good results in table 1 with a sensible improvement when using WENO5
schemes. The solution of equation 6 along the axis associated to the cylinder
containing x0 is presented on Figure 2 [center]. The recovery of the underlying
pathways reaching x0 by our intrinsic method turns out to be fast in practice and
accurate. Figure 3 [left] shows the computed geodesics linking x0 to anisotropic
voxels located at the extremity of a different cylinder. This is basically what
happens in the brain white matter when multiple fibers bundles pass through a
single voxel. Our global approach seems particularly adequate to disambiguate
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Fig. 3. Inferred geodesics by intrinsic integration - [left]: synthetic [right]: real data

the problem of fibers tracts crossings by minimizing the geodesic distance in the
white matter.

Real diffusion data on Figure 2 [right] is used to focus on the posterior part
of the corpus callosum. Estimation of the distance function with upwind and
WENO5 schemes produces again very good results with evident advantage in
term of robustness for WENO implementation. We must notice here that our
numerical flux tends to be a bit diffusive, resulting in smooth distance functions.
This may be a problem if the original data itself does not have a good con-
trast since this could yield geodesics with very low curvature. Exponential map
based integration produces the result of Figure 3 [right] when starting from the
extremities of the major forceps. We have noticed that our method is not influ-
enced by locally spherical or planar tensors since the estimated fibers are not
affected by the presence of lower anisotropy regions (in red) that coincide with
crossings areas. This global approach thus brings coherence into diffusion tensor
data and naturally handles the issues affecting local tractography methods like
inconsistent tracking in locally isotropic areas.

6 Conclusion

Diffusion imaging is a truly quantitative method which gives direct insight into
the physical properties of tissues through the observation of random molecular
motion. However correct interpretation of diffusion data and inference of accurate
information is a very challenging project. Our guideline has been to always bear
in mind that the true and unique phenomenon that diffusion imaging records
is Brownian motion. Taking that stochastic process as our starting point, we
have proposed a novel global approach to white matter connectivity mapping. It
relies on the fact that probing and measuring a diffusion process on a manifold
M provides enough information to infer the geometry of M and compute its
geodesics, corresponding to diffusion pathways. Clinical validation is obviously
needed but already we can think of extensions of this method: intrinsic geodesics
regularization under action of scalar curvature of M , geodesics classification to
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recover complete tracts. Estimation of geodesics deviation could be used to detect
merging or fanning fiber bundles.
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