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Abstract. We propose a multiple classifier system approach to object recognition
in computer vision. The aim of the approach is to use multiple experts successively
to prune the list of candidate hypotheses that have to be considered for object inter-
pretation. The experts are organised in a serial architecture, with the later stages
of the system dealing with a monotonically decreasing number of models. We
develop a theoretical model which underpins this approach to object recognition
and show how it relates to various heuristic design strategies advocated in the
literature. The merits of the advocated approach are then demonstrated experi-
mentally using the SOIL database. We show how the overall performance of a
two stage object recognition system, designed using the proposed methodology,
improves. The improvement is achieved in spite of using a weak recogniser for the
first (pruning) stage. The effects of different pruning strategies are demonstrated.

1 Introduction

There are several papers [4,14,15,16,17,8,11,9] concerned with multiple classifier system
architectures suggesting that complex architectures, in which the decision process is de-
composed into several stages involving coarse to fine classification, result in improved
recognition performance. In particular, by grouping classes and performing initially
coarse classification, followed by a fine classification refinement which disambiguates
the classes of the winning coarse group, one can achieve significant gains in perfor-
mance. [9] applies this approach to the problem of handwritten character recognition
and suggests that class grouping should maximise an entropy measure. Similar strategies
have been advocated in [4,14,15,16,17]. The popular decision tree methods can be seen
to exploit the same phenomenon.

The aim of this paper is to demonstrate that these heuristic processes do have a
theoretical foundation. We propose a framework for analysing the benefit of hierarchical
class grouping. Using this framework we develop a theoretical basis for multiple expert
fusion in serial coarse to fine object recognition system architectures. The analysis will
suggest and explain a number of strategies that can be adopted to build such architectures.

We apply the proposed design methodology to the problem of 3D object recognition
using 2D views. This problem has been receiving a lot of attention over the last two
decades, resulting in a spectrum of techniques which exploit, for instance, colour [20,
5,12], shape [2,19] and object appearance [18,10,13]. Although none of the existing
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methods provide a panacea on their own, we argue that a combination of several object
recognition techniques can be very effective.

More specifically we demonstrate that the proposed approach accomplishes a se-
quential pruning of the list of object model hypotheses, with the later stages of the
system having to deal with a monotonically decreasing number of models. The merits of
the advocated approach are then demonstrated experimentally using the SOIL database.
We show, how the overall performance of a two stage object recognition system based
on the expounded principles improves. The improvement is achieved in spite of using a
weak recogniser for the first (pruning) stage. The effects of different pruning strategies
are demonstrated.

The paper is organised as follows. In Section 2 the problem of object recognition using
hierarchical class grouping is formulated. We derive an expression for the additional
decision error, over and above the Bayes error, as a function of estimation error. In
Section 3 we discuss various model pruning strategies that naturally stem from this
analysis. In Section 4 one of these strategies is applied to the problem of 3D object
recognition using a two stage decision making system. Section 5 draws the paper to
conclusion.

2 Mathematical Notation and Problem Formulation

Consider an object recognition problem where object Z is to be assigned to one of
m possible models {ωi, i = 1, ...m}. Let us assume that the given scene object is
represented by a measurement vector, x. In the measurement space each object category
ωk is modelled by the probability density function p(x|ωk) and let the a priori probability
of object occurrence be denoted by P (ωk). We shall consider the models to be mutually
exclusive which means that only one model can be associated with each instance.

Now according to the Bayesian decision theory, given measurements x, the instance,
Z, should be assigned to model class ωj , i.e. its label θ should assume value θ = ωj ,
provided the aposteriori probability of that interpretation is maximum, i.e.

assign θ → ωj if

P (θ = ωj |x) = max
k

P (θ = ωk|x) (1)

In practice, for each interpretation, a decision making system will provide only an
estimate P̂ (ωi|x) of the true aposteriori class probability P (ωi|x) given measurement
x, rather than the true probability itself. Let us denote the error on the estimate of the ith

model class aposteriori probability at point x as e(ωi|x) and let the probability distri-
bution of errors be pi[e(ωi|x)]. Clearly, due to estimation errors, the object recognition
based on the estimated aposteriori probabilities will not necessarily be Bayes optimal. In
the appendix we derive the probability, eS(x) of the decision relating to object x being
suboptimal, and refer to it as the switching error probability. We shown in (14) that
this probability primarily depends on the margin ∆Psi(x) = P (ωs|x) − P (ωi|x) be-
tween the aposteriori probabilities of the Bayes optimal hypothesis ωs and the next most
probable model ωi, as well as on the width (variance) of the distribution of estimation
error.
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Now how do these labelling errors translate to recognition error probabilities? We
know that for the Bayes minimum error decision rule the error probability at point x
will be eB(x). If our pseudo Bayesian decision rule, i.e. the rule that assigns patterns
according to the maximum estimated aposteriori class probability, deviates from the
Bayesian rule with probability eS(x), the local error of the decision rule will be given by

α(x) = eB(x)[1 − eS(x)] + eS(x)[1 − eB(x)] (2)

The error, α(x), will be close to Bayesian only if eS(x) is negligible. Thus we want
the label switching error to be as small as possible.

Conventionally, the multiple classifier fusion paradigm attempts to ameliorate the
switching error probability by reducing the variance of estimation errors. This is achieved
by combining multiple estimates obtained by a number of diverse object recognition
experts. In this paper we adopt a completely different approach that strives to increase
the margin between the posteriors of the competing model hypotheses in order to reduce
the error probability eS(x) by alternative means. The basic idea is to group models into
superclasses in such a way that the margin between the posteriors of the resulting model
sets widens. The number of groups is a free parameter. For our purposes we divide the
classes into two groups and perform a coarse classification of the input pattern to one
of these two groups. Then, in the next stage, we refine the classification and continue
dividing the the most probable super class in the two subsets by considering the remaining
alternatives.

In general, there will be m hypotheses that can be grouped hierarchically into two
groups at each stage of the hierarchy. Let us denote the two groups created at stage k
by Ωk and Ω̄k. The set Ωk will be divided in the next stage into two subsets, and so on.
Thus the class sets Ωk will satisfy

ΩkεΩj j < k (3)

Further, let us denote the probability of classifying measurement vectorx from superclass
Ωk suboptimally by wk(x). Referring to (14), in this two (super)class case, the switching
error probability at stage k is given simply by

wk(x) =
∫ ∞

∆P
Ωk (x)

p[ηΩk(x)]dηΩk(x) (4)

where ∆PΩk(x) is the margin between the posteriors of thw two super classes at stage k
and ηΩk(x) is the associated estimation error. Assuming that the Bayes optimal hypoth-
esis is contained in set Ωk, it will end up in superclass Ωk+1 with probability 1−wk(x)
Similarly, at the (k + 1)st stage the probability of making a suboptimal decision is
wk+1(x), while the Bayes optimal decision will be made with probability 1−wk+1(x).
The complete n-stage hypothesis refinement process is illustrated in Figure 1. By refer-
ence to Figure 1 the total switching error probability of the hierarchical decision making
process can be written as

eS(x) = w1(x) +
n−1∑
i=2

[Πi−1
j=1(1 − wj(x))]wi(x)

+ [Πn−1
j=1 (1 − wj(x))]wn(x) (5)
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Fig. 1. The total probability of label switching, eS(x) in a coarse to fine multistage object recog-
nition system

Note that the final stage will involve only the closest competitors, classes Ωn =
{ωs, ωi}. The probability wn(x) of label switching will be given by

wn(x) =
∫ ∞

∆Qsi(x)
p[ηω(x)]dηω(x) (6)

where ηω(x) = 2e(ωi|x) is the combined estimation error for the two posteriors, since
in the two class e(ωs|x) = −e(ωi|x).

In equation (6) we denote the aposteriori probabilities, Q(ωr|x), r = s, i for model
classes ωs and ωi by different symbols to indicate that these functions differ from
P (ωr|x), r = s, i by a scaling factor P (ωs|x) + P (ωi|x) since they have to sum
up to one. Note that if functions Q(ωr|x) are estimated via probability densities, the
estimation errors will be scaled up versions of the original errors e(ωr|x). However, if
these functions are estimated directly from the training data, the errors will be different
and can be assumed to have the same distribution as the original unscaled errors e(ωr|x).
If this is the case, then one can see why this two stage approach may produce better re-
sults. The probability mass under the tail of the error estimation distribution will rapidly
decay as the margin (the tail cut off) increases. If the error distributions are the same but
the margins increase by scaling, the probability of label switching will go down.

3 Discussion

Let us consider the implication of expression (5). Assuming that the estimation errors
have identical distribution at all the stages of the sequential decision making process,
the label switching error wi(x) at stage i will be determined entirely by the margin
(difference) between the aposteriori probabilities of classes P (Ωi|(x)) and P (Ω̄i|(x)).
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By grouping model classes at the top of the hierarchy we can increase this margin and
therefore control the additional error. In this way we can ensure that the additional errors
wi(x) in all but the last stage of the decision making process are negligible. In the
limiting case, when wi(x) → 0, i = 1, ...., n − 1 the switching error eS(x) will be
equal to wn(x). At that point the set Ωn is likely to contain just a single class. Thus the
last stage decision will involve two classes only. Note that whereas the margin between
the aposteriori probabilities of the two model classes, say ωs and ωi, at the top of the
hierarchy, was P (ωs|x) − P (ωi|x), in the last stage, it will become

δ =
P (ωs|x) − P (ωi|x)
P (ωs|x) + P (ωi|x)

(7)

Thus the margin will be significantly magnified and consequently the additional error
eS(x) significantly lower than what it would have been in a single stage system.

The expression (5) immediately suggests a number of grouping strategies. For in-
stance, in order to maintain the margin as large as possible in all stages of the decision
making process it would clearly be most effective to group all but one class in one super
class and the weakest class in the complement super class. This strategy has been sug-
gested, based on heuristic arguments, in [21]. The disadvantage of this strategy is that it
would involve m − 1 decision steps.

Computationally more effective is to arrive at a decision after log2m steps. This
would lead to grouping which maintains a balance of the two class sets Ωi and Ω̄i.
Another suggestion [9] is to split the classes so as to minimise an entropy criterion.
However, all these strategies exploit the same underlying principle embodied by our
model.

4 Experimental Results

In this section we illustrate the merits of model grouping within the context of 3D object
recognition. The core of our object recognition system is a region-based matching scheme
proposed in [1]. In this method an object image is represented by its constituent regions
segmented from the image. The regions are represented in the form of an Attributed
Relational Graph (ARG). In this representation each region is described individually
and by its relation with its neighbouring regions expressed in terms of binary measure-
ments. We use the representative colour of each region as its unary measurement and we
characterize geometric relations between region pairs using binary measurements.
The matching process is performed using probabilistic relaxation labelling [3]. In this
approach, for each region from a test image, we compute the probability that the region
corresponds to a particular node of the ARG representing the combined set of object
models. We model an object using an image taken from the frontal view. The label
probabilities for a region in the test image are initialized by measuring the similarity be-
tween the unary measurements corresponding to the two regions being matched. These
probabilities are then updated by taking into account the consistency of labelling at the
neighbouring regions.

We tested the idea of grouping from two different aspects: label and model grouping.
By label grouping we mean that for each region in the test image we classify the union



Multiple Classifier System Approach to Model Pruning in Object Recognition 347

of labels associated with the regions in the database into two sets: candidate labels and
rejected labels. The process of region matching then proceeds using only the set of
candidate labels. We propose two label pruning schemes: pruning at the initialization
stage and at the end of each iteration of the relaxation labelling. At initialization, for
each region in the test image we compile a list of candidate labels. This list is based
on the degree of similarity between unary measurements. At the end of each iteration
of the relaxation labelling process we note the label probabilities associated with each
region in the test image and drop those labels whose probabilities are below a predefined
threshold.

Model grouping realizes the same idea at a higher level. Let us consider our model-
based recognition system as a set of serial classifiers where each classifier is in fact
an object recognition expert. Each expert takes the list of model candidates from the
previous expert and delivers a pruned list of model candidates to the next classifier. The
pruning of models is performed by matching the test image features against features
extracted from the model candidates. The objective for the last expert is to select the
winning candidate.

In a simple case of this scenario we consider just two recognition experts in a tandem.
The first expert performs a course grouping of the object hypotheses based on an entropy
criterion. This initial classification is performed using colour cues. We opt for the MNS
method of Matas et al [12] for this purpose. In this method the colour structure of
an image is captured in terms of a set of colour descriptors computed on multimodal
neighbourhoods detected in the image[12]. We use the similarity between the descriptors
from the scene image and each of the m object models to find the aposteriori probabilities
of the object in the scene image belonging to the various model classes in the database.

Having provided the set of a posteriori probabilities P = {p(ωi|x), ∀i ∈ {1 · · ·m}},
we rank them in the descending order. Our objective is to compile a list of hypothesised
objects based on their likelihood of being in the scene (P). For this purpose we use the
entropy of the system as a criterion. Let us consider the list,Ω, of model hypotheses
arranged according to the descending order of their probabilities. If Ω is split into two
groups Ω1 and Ω̄1 comprising the K most likely objects in the scene and the remaining
objects in the database respectively, the entropy of the system is evaluated as follows [7]:

E = αE(Ω1) + (1 − α)E(Ω̄1) (8)

where E(Ω1) and E(Ω̄1) are the entropies associated with groups Ω1 and Ω̄1 respec-
tively and α is the probability that the present object in the scene exists in the group Ω1.
By searching the range of possible configurations,(r = 1 · · ·m), the grouping with the
minimum entropy is selected and the group of the hypothesised objects,Ω1, is passed to
the next expert. The second expert is the ARG matcher[1] described earlier. The whole
recognition system is referred to as the MNS-ARG method.

We designed two experiments to demonstrate the effect of both label pruning and
model pruning on the performance of the ARG method. We compared three recognition
systems from the recognition rate point of view: ARG with/without label pruning and
MNS-ARG (with label pruning). The experiments were conducted on the SOIL-47 (Sur-
rey Object Image Library) database which contains 47 objects each of which has been
imaged from 21 viewing angles spanning a range of up to ±90 degrees. Figure 2 shows
the frontal view of the objects in the database. The database is available online[6]. In
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Fig. 2. The frontal view of some objects in the SOIL47 database

Fig. 3. An object in the database imaged from 20 viewing angles

this experiment we model each object using its frontal image while the other 20 views
of the objects are used as test images (Fig. 3). The size of images used in this experiment
is 288 × 360 pixels.

In the first experiment we applied the ARG matching for two different cases: with
label pruning and without label pruning. The recognition performance for these two cases
is shown in Fig. 4. As can be seen, the performance of the ARG matching is considerably
enhanced by label pruning. It is worth noting that as this experiment showed the label
pruning also speeds up the process of the relaxation labelling significantly.



Multiple Classifier System Approach to Model Pruning in Object Recognition 349

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

pose

co
rr

e
ct

 r
e

co
g

n
iti

o
n

 r
a

te

Grouping using MNS
Recognition using ARG (Without label pruning)
Recognition using ARG (With label pruning)
MNS−ARG(With label pruning)

Fig. 4. The percentage of correct recognition for the ARG and the MNS-ARG methods
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Fig. 5. The likelihood of the correct model being in the list of hypothesised objects generated by
the MNS method

In the second experiment, for each test image we applied the MNS method to deter-
mine the hypothesised objects matched to it. The results of the experiment are shown in
Fig. 5. In this figure we plot the percentage of cases in which the list of hypothesised
objects includes the correct model. This rate has been shown as a function of the object
pose. For comparison we plot the percentage of cases in which the correct object has the
highest probability among the other candidates. It is referred to as the recognition rate.
The results illustrate that the recognition rate for the MNS method is not very high. This
is not surprising as many grossery items contain similar surface colours.
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In contrast, as seen from Fig. 5 in the majority of cases the hypothesised list includes
the correct object. It is worth noting that the average size of the list of hypothesised
objects is 16 which is near to one third of the database size(47 objects).

The ARG method was then applied to identify the object model based on the list of
hypothesised objects generated by the MNS method. This recognition procedure was
applied to all test images in the database. In Fig. 4 we have plotted the recognition rate
for the MNS-ARG method as a function of object pose. For comparison we have shown
the recognition rate when ARG method is applied as a stand alone expert. As a base line
we added the rate of correct classification of the MNS method. The results show that
the object grouping using the MNS method improves the recognition rate particularly
for extreme object views. For such views the hypotheses at a node of the test graph do
not receive a good support from its neighbours (problem of distortion in image regions).
Moreover a large number of labels involved in the matching increases the entropy of
labelling. When the number of candidate labels for a test node declines by virtue of
model pruning the entropy of labelling diminishes. Consequently it is more likely for a
test node to take its proper label (instead of the null label).

Similar to label pruning, the grouping using the MNS method not only gains the
recognition rate but also it reduces the computational complexity of the entire recognition
system. This experiment showed that the MNS-ARG method can be performed almost
three times faster than the stand alone ARG method.

5 Conclusion

We proposed a multiple classifier system approach to object recognition in computer
vision. Multiple experts are used successively to prune the list of candidate hypotheses
that have to be considered for object interpretation. The experts are organised in a serial
architecture, with the later stages of the system dealing with a monotonically decreasing
number of models. We developed a theoretical model which underpins this approach to
object recognition and show how it relates to various heuristic design strategies advocated
in the literature. The merits of the advocated approach were then demonstrated on a two
stage object recognition system. Experiments on the SOIL database showed worthwhile
performance improvements, especially for object views far from the frontal, which was
used for modelling. The improvements were achieved in spite of using a weak recogniser
for the first (pruning) stage. The beneficial effects of different pruning strategies were
demonstrated.
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Appendix: Probability of Suboptimal Decision Making

In order to investigate the effect of estimation errors on decision making, let us examine
the class aposteriori probabilities at a single point x. Suppose the aposteriori probability
of class ωs is maximum, i.e. P (ωs|x) = maxm

i=1 P (ωi|x) giving the local Bayes error
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eB(x) = 1 − P (ωs|x). However, our classifier only estimates these aposteriori class
probabilities. The associated estimation errors may result in suboptimal decisions, and
consequently in an additional recognition error. To quantify this additional error we
have to establish what the probability is for the recognition system to make a suboptimal
decision. This situation will occur when the aposteriori class probability estimates for
one of the other model classes becomes maximum. Let us derive the probability eSi

(x)
of the event occurring for class ωi, i �= s, i.e. when

P̂ (ωi|x) − P̂ (ωj |x) > 0 ∀j �= i (9)

Note the left hand side of (9) can be expressed as

P (ωi|x) − P (ωj |x) + e(ωi|x) − e(ωj |x) > 0 (10)

Equation (10) defines a constraint for the two estimation errors e(ωk|x), k = i, j as

e(ωi|x) − e(ωj |x) > P (ωj |x) − P (ωi|x) (11)

The event in (9) will occur when the estimate of the aposteriori probability of class
ωi exceeds the estimate for class ωs, while the other estimates of the aposteriori class
probabilities ωj , ∀j �= i, s remain dominated by P̂ (ωi|x). The first part of the condition
will happen with the probability given by the integral of the distribution of the error
difference in (11) under the tail defined by the margin ∆Psi(x) = P (ωs|x) − P (ωi|x).
Let us denote this error difference by ηω(x). Then the distribution of error difference
p[ηω(x)] will be given by the convolution of the error distribution functions pi[e(ωi|x)]
and ps[e(ωs|x)], i.e.

p[ηω(x)] =
∫ ∞

−∞
pi[ηω(x) + e(ωs|x)]ps[e(ωs|x)]de(ωs|x) (12)

Note that errors e(ωr|x), ∀r are subject to various constraints (i.e.
∑

r e(ωr|x) =
0, −P (ωr|x) ≤ e(ωr|x) ≤ 1 − P (ωr|x)). We will make the assumption that the
constraints are reflected in the error probability distributions themselves and therefore
we do not need to take them into account elsewhere (i.e. integral limits, etc). However,
the constraints also have implications on the validity of the assumptions about the error
distributions in different parts of the measurement space. For instance in regions where
all the classes are overlapping, the Gaussian assumption may hold but as we move to
the parts of the space where the aposteriori model class probabilities are saturated, such
an assumption would not be satisfied. At the same time, one would not be expecting
any errors to arise in such regions and the breakdown of the assumption would not be
critical. Returning to the event in (9), the probability of the first condition being true is
given by

∫ ∞
∆Psi(x) p[ηω(x)]dηω(x)

Referring to equation (11), for each j the second condition will hold for j �= s, i

with probability
∫ ∆Pij(x)+e(ωi|x)

−∞ pj [e(ωj |x)]de(ωj |x), with the exception of the last
term, say e(ωk|x) which is constrained by

e(ωk|x) = −
m∑

j = 1
j �= k

e(ωj |x) (13)
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Thus, finally, the probability of assigning point x to model class ωi instead of the Bayes
optimal class ωs will be given by

eSi
(x) =

∫ ∞
∆Psi(x) p[ηω(x)]dηω(x)

• ∫ ∆Pij(x)+e(ωi|x)
−∞ pj [e(ωj |x)]de(ωj |x)........

...
∫ ∆Pil(x)+e(ωi|x)

−∆Pik(x)−e(ωi|x)−
∑m

t = 1
t �= k
t �= l

et(ωt|x)
pl[e(ωl|x)]de(ωl|x)

(14)

and the total probability of label switching will be given by

eS(x) =
m∑

i = 1
i �= s

eSi
(x) (15)
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