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Abstract. In this paper we develop a systematic theory about local
structure of moving images in terms of Galilean differential invariants.
We argue that Galilean invariants are useful for studying moving im-
ages as they disregard constant motion that typically depends on the
motion of the observer or the observed object, and only describe relative
motion that might capture surface shape and motion boundaries. The
set of Galilean invariants for moving images also contains the Euclidean
invariants for (still) images.

Complete sets of Galilean invariants are derived for two main cases: when
the spatio-temporal gradient cuts the image plane and when it is tangent
to the image plane. The former case correspond to isophote curve motion
and the later to creation and disappearance of image structure, a case
that is not well captured by the theory of optical flow.

The derived invariants are shown to be describable in terms of accelera-
tion, divergence, rotation and deformation of image structure.

The described theory is completely based on bottom up computation
from local spatio-temporal image information.

1 Introduction

The aim of this paper is to describe the local (differential) structure of moving
images. By doing this we want to find a set of local differential descriptors that
can describe local spatio-temporal pattern much as e.g. gradient strength, Lapla-
cian zero-crossings, blob and ridge detectors, isophote curvature etc describe the
local structure in images.

The dominating approach to computational visual motion processing (re-
viewed in [2, 15]) is to first compute the optical flow field, i.e. the velocity
vectors of the particles in the visual observer’s field of view, projected on its
visual sensor area. From this various properties of the surrounding scene can
be computed. Ego-motion can, under certain circumstances, be computed from
the global shape of the field, object boundaries from discontinuities in the field,
and surface shape and motion for rigid objects, can be computed from the local
differential structure of the field [12, 13].
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Unfortunately the computation of the optical flow field leads to a number of
well known difficulties. The input is the projected (gray-level) image of the sur-
roundings as a function of time, i.e. a three-dimensional structure. It is in general
not possible to uniquely identify what path through the spatio-temporal image
is a projection of a certain object point. Thus, further assumptions are needed,
the most common one is the brightness constancy assumption, that the projec-
tion of each object point has a constant gray level. The brightness constancy
assumption breaks down if the light changes, if the object have non-Lambertian
reflection, or, if it has specular reflections. However, the problem is still under-
determined, generically. Except at local extrema in the gray-level image, points
with a certain gray-level lie along curves, and these curves sweep out surfaces
in the spatio-temporal image. A point along such a curve can therefore corre-
spond to any point on the surface at later instants of time. This is refered to as
the aperture problem and is usually treated by invoking additional constraints
e.g. regularization assumptions, such as smoothly varying brightness patterns,
or parameterized surface models and trajectory models, leading to least-square
methods applied in small image regions. Beside the questionable validity of these
assumptions they lead to inferior results near motion boundaries, i.e. the regions
that carry most information about object boundaries. The behavior when new
image structure appears or old structure disappears is also undefined.

An alternative approach for visual motion analysis is to directly analyze the
geometrical structure of the spatio-temporal input image, thereby avoiding the
detour through the optic flow estimation step [18, 19, 11]. By using the differential
geometry of the spatio-temporal image, we get a low level syntactical description
of the moving image whithout having to rely on the more high level semantic
concept of object particle motion.

A systematic study of the local image structure, in the context of scale-space
theory, has been pursued by Florack [6]. The basic idea is to find all descriptors
of differential image structure that are invariant to rotation and translation (the
Euclidean group). The choice of Euclidean invariance reflects that the image
structures should be possible to recognize in spite of (small) camera translations
and rotations around the optical axis. This theory embeds many of the operators
previously used in computer vision, such as Canny’s edge detector, Laplacian
zero-crossings, blobs, isophote curvature and as well enabling the discovery of
new ones.

2 Spatio-Temporal Image Geometry

Extending from a theory about spatial images to one about spatio-temporal im-
ages it is natural to use the concept of absolute time (see e.g. [8] for a more
elaborate discussion). Each point in space-time can be designated numeric label
describing what time it occurred. The sets of space-time points that occurred at
the same time are called planes of simultaneity and the temporal distance be-
tween two planes of simultaneity can be measured (in the small spatio-temporal
regions that seeing creatures, operates in, we see no need for handling relativistic
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effects, there are however other opinions, see [10]). The space-time can be strati-
fied in a sequence of planes of simultaneity, and be given coordinate systems that
separates time and space, (t, x) ∈ IR × IR2. From the consequences of absolute
time, we conclude that we only want to allow for space-time transformations
that never mixes the planes of simultaneity.

As a spatio-temporal image restricted to a plane of simultaneity can be con-
sidered as a still image the reasons for using Euclidean invariance in the image
plane applies to moving images as well. Image properties should not be depen-
dent on when we choose to measure them (invariance under time translations).
The local average velocity contains only information about the ego motion and
no information about the three dimensional structure of the environment, and is
therefore natural to disregard. We thus search for properties that are invariant
to the 2+1 dimensional Galilean group. The use of Galilean image geometry
has been proposed in e.g. [4, 1, 9]. Using parallel projection as image formation
model, the Galilean invariants are those properties of the surrounding that can-
not be explained in terms of a relative constant translational motion. A Galilean
model of the moving image is also implicitly assumed when divergence, curl and
deformation are described as flow field invariants [12].

Definition 1 (Galilean group). The group of Galilean motions Γn+1:(
t′

x′

)
=

(
1 v
0 R

) (
t
x

)
+ a =

(
1 0
0 R

) (
1 v
0 I

) (
t
x

)
+ a (1)

x, v ∈ IRn, t ∈ IR, R ∈ SO(n) and a ∈ Γn+1.

Each Galilean motion can be decomposed in a spatial rotation, a spatio-temporal
shear (constant velocity) and a space-time translation. It can be shown that
planes of simultaneity (constant time) are invariant and has Euclidean geometry,
i.e. distances and angles are invariants. The temporal distance between planes
of simultaneity is invariant.

3 Moving Frames

The Galilean geometry has no metric in traditional sense. That means that
metric based differential geometry cannot be used in its normal formulations.
We therefore chose to use a Lie group based approach instead (see [14] for a
different approach on a geometry with degenerate metric).

According to Klein’s famous Erlangen program, given a space S and a group
of transformations G over S, the geometric structure of (S, G) is all structure
that is invariant to transformations in G. In the following we will study the
differential geometric properties of scalar functions and sub-manifolds (curves
and surfaces) in IR2 and IR3 subject to Galilean and in some cases Euclidean
transformations.

A convenient way to find geometrical structure is to use Cartan theory about
moving frames [3, 16]. A frame field is a smooth map from the base space to group
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elements, S → G. For a Galilean geometry Γn+1 the frame field is a mapping
IRn → Γn+1. A frame field can be conceptiualized by its action on an arbitrary
coordinate system for the tangent space of the base space. For Γn+1 we can e.g.
attach a Galilean ON-system at each point.

Definition 2. A Γn+1 coordinate system is an affine coordinate system where n
vectors lies in the spatial part. A Γn+1 ON-system is a Γn+1 coordinate system
s.t. the spatial part consists of n dimensional ON-coordinate system and the
remaining base vector has unit temporal length.

The property of beeing a Γn+1 ON-system is a Galilean invariant. In the sequel
we will use the coordinate system view of frame fields as we find it easier to
visualise.

The main idea of Cartans theory about moving frames is to put a frame at
each point that is connected to the local structure of the sub-manifold or the
function in an invariant way. In this way we get a frame field.

For a function f defined on S, all expressions over mixed derivatives w.r.t.
the Cartan frame at a certain point are by construction geometrical invariants.
This class of invariants are called differential invariants.

On sub-manifolds, we can find the local geometrical structure from how the
frame field varies in the local neighborhood.

Let i be any (global) frame and e a frame connected to the local structure
s.t. e = Ai, where the attitude transformation A ∈ G is a function of position.
The local variation of e can be described in an invariant way in terms of e,

de = dAi = dAA−1e = C(A)e, (2)

where the one-form (see [3]) C(A) is called the connection matrix. In a certain
sense, the connection matrix contains all geometric information there is.

Scalar invariants can be generated by contracting the coefficients in the con-
nection matrix on the vectors in the Cartan frame, cijek. A useful property of
the connection matrix is,

C(AB) = C(A) + AC(B)A−1, (3)

which is a direct consequence of the definition.
The level-sets f−1(c) of smooth scalar functions f are sub-manifolds, the

geometric structure of those, the level-set invariants, are invariant w.r.t. the
group of constant monotonic transformations g ◦ f , g : IR → IR, g′ > 0.

4 Image Geometry

Now we will study Galilean differential geometry of moving images using Cartan
frames. Image spaces can be considered being trivial fiber bundle S ⊗ I, where
S is the base space and the fiber I is log intensity [14]. Most of the time we will
discuss the image geometry in terms of an arbitrary section of the fiber bundle
i.e. functions f : S → I. We will start by revieving differential geometry for
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images over E2 to illustrate the metod of moving frames and as E2 is a sub
geometry of Γ3 so that we will need these results later anyway. We continue
by studying differential geometry of Γ2 and, which is our main goal, differential
geometry of images over Γ3

For scalar functions over E2 there are two typical situations: the gradient is
non-zero almost everywhere and it is zero along curves.

4.1 Gradient Gauge

We study the geometry of functions f in E2. For points p where ∇f 6= 0 we
attach an ON-frame {∂u, ∂v} s.t. fu = 0. (u, v) is a gauge coordinate system.(

∂u

∂v

)
=

1
‖∇f‖

(
fy −fx

fx fy

) (
∂x

∂y

)
= A

(
∂x

∂y

)
(4)

where {∂x, ∂y} is a global ON-frame.
All functions over ∂i

u∂j
vf, i + j ≥ 1 becomes invariants w.r.t. rotations in

space and translation in the intensity fibers. From (2) we get the anti-symmetric
connection matrix:

C(A) =
(

0 c12

−c12 0

)
, (5)

where,

c12 =
(fxfxy − fyfxx)dx + (fxfyy − fyfxy)dy

f2
x + f2

y

= −fuu

fv
du +−fuv

fv
dv. (6)

where the expression is simplified by the use of the {∂u, ∂v} coordinate system,
and the relation fu = 0. By contracting c12 on the components in the Cartan
frame we arrive at:
Theorem 1. A complete set of level-curve invariants for scalar functions on E2

is the level curve curvature, and the flow line curvature,

κ = c12∂u = −fuu/fv, µ = c12∂v = −fuv/fv. (7)

These are invariants w.r.t. rotation in the plane and monotonic transforma-
tions in the intensity fibers.

4.2 Hessian Gauge

The ON-frame (4) is not defined on critical points, ∇f = 0, on typical critical
points we can instead use an ON-frame {∂p, ∂q} that diagonalize the Hessian,
i.e. fpq = 0 and |fpp| > |fqq|.(

∂p

∂q

)
=

(
cos φ − sinφ
sinφ cos φ

) (
∂x

∂y

)
= A

(
∂x

∂y

)
, (8)

where tan 2φ = fxy/(fyy − fxx). All functions over ∂i
p∂

j
q , i + j ≥ 2, becomes

invariants w.r.t. the unimodular isotropic group, i.e. rotation in the image plane
and adition of a linear light gradient [14]. The Hessian frame {∂p, ∂q} is invariant
w.r.t. the isotropic group, i.e. all the motion in the isotropic group as well as
scaling in the plane and in the intensity fiber [14].
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5 Functions in Γ2

First let us study the general geometrical situation for Γ2. The attitude trans-
formation must be of the form:(

∂s

∂u

)
=

(
1 v
0 1

) (
∂t

∂x

)
= A

(
∂t

∂x

)
, (9)

where v, is a function of the spatio-temporal position and {∂s, ∂x} is the adapted
frame. We immediately see that ∂u = ∂x. The connection matrix becomes:

C(A) =
(

0 c01

0 0

)
(10)

where c01 = vtdt + vxdx. This could be expressed in the adapted coordinate
system instead, giving c01 = vsds + vudu. If the coefficient in the connection
matrix is contracted on the vectors in the adapted frame, we get two scalar
invariants, a = c01∂s = vs, that describe how the spatio-temporal part of the
frame changes in the direction of it self, i.e. it describes the acceleration of the
structure that the frame is adapted to. The other scalar invariant, δ = c01∂u =
vu, describes how the spatio-temporal part of the adapted frame changes in the
spatial direction, i.e. the divergence of the vector field ∂s, restricted to the spatial
line.

For scalar functions on Γ2, there are three typical situations, the level curves
are transverse to the spatial lines almost everywhere, along isolated curves the
level curves are tangent to the spatial lines and there are also isolated critical
points.

If one uses the constant brightness assumption as binding hypothesis between
image patterns and surface motion then the level curves, (or isophotes) corre-
sponds to motion in the traversal case and creation or annihilation of structure
in the non-transversal case.

5.1 Spatially Transversal Level Curves

On points where the level curve is transverse to the spatial line, fx 6= 0, we
can define a Γ2-frame, {∂s, ∂x}, s.t. fs = 0. Expressed in an arbitrary Γ2-frame,
{∂t, ∂x}, ∂s must be on the form:

∂s = ∂t + γ∂x, (11)

using fs = 0 and solving for γ, we get γ = −ft/fx. Hence the attitude matrix
becomes,

A =
(

1 −ft/fx

0 1

)
(12)

and for the connection matrix (10), we get:

c01 =
ftftx − fxftt

f2
x

dt +
ftfxx − fxftx

f2
x

dx = −fss

fx
ds− fsx

fx
dx. (13)
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Contracting c01 on the vectors of the adapted frame we get our scalar invariants,
the invariants are summarized in the following theorem.

Theorem 2. A complete set of level-curve invariants for spatially transversal
level-curves on Γ2 is level-curve acceleration the level-curve divergence

a = c01∂s = −fss/fx, δ = c01∂x = −fsx/fx. (14)

5.2 Hessian Invariants

On points where fx = 0, there is no tangent gauge. For points where fxx 6= 0,
we can define a Hessian gauge, i.e. an adapted Galilean ON-frame {∂s, ∂x} s.t.
fsx = 0. Repeating the steps from the last section, applying (11) on fx, using
fsx = 0 and solving for γ, we get the attitude transformation:(

∂s

∂x

)
=

(
1 −ftx/fxx

0 1

) (
∂t

∂x

)
= A

(
∂t

∂x

)
. (15)

and in the connection matrix (10), we get:

c01 = −fssx

fxx
ds− fsxx

fxx
= a ds + δ dx. (16)

Which we summarize in the following theorem.

Theorem 3. A complete set of Hessian invariants for points where fxx 6= 0 on
Γ2 is Hessian acceleration and Hessian divergence

a = c01∂s = −fssx/fxx, δ = c01∂x = −fsxx/fxx. (17)

6 Functions in Γ3

For Galilean 2+1 dimensional geometry, the attitude matrix in general have the
form:  ∂t

∂u

∂v

 =

1 vx vy

0 cos θ − sin θ
0 sin θ cos θ

  ∂t

∂x

∂y

 = Ai, (18)

where vx, vy and θ are functions of the spatio-temporal position. It can be shown
that the connection matrix expressed in the adapted coordinate system has the
form:

C(A) =

0 auds + δudu + σudv avds + σvdu + δvdv
0 0 ρ ds + κudu + κvdv
0 −(ρ ds + κudu + κvdv) 0

 =

0 c01 c02

0 0 c12

0 −c12 0

 .

(19)
Here c01 and c02 describes how the spatio-temporal part of the frame moves in
different directions, c01 describes the motion projected on the {∂s, ∂u} plane,
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and c02 the motion projected on the {∂s, ∂v} plane. The form c12 describes how
the spatial frame {∂u, ∂v} rotates when moving in different directions.

Contracting the connection forms on the different vectors in the local adapted
frame, we get nine different scalar invariants. We continue by giving these invari-
ants an interpretation. If we consider the integral curves from the vector field
{∂s}, then au describe the acceleration of the integral curve projected on the
{∂s, ∂u} plane, and av the corresponding acceleration on the {∂s, ∂v} plane. ρ
describes how much the spatial part of the frame rotates in the ∂s direction.
The invariants κu and κv describe the curvatures of the integral curves for the
vector fields {∂u} and {∂v} respectively. The remaining invariants describe how
the vector field {∂s} changes for motions in the spatial plane, δu and δv describe
the divergence in the ∂u and ∂v directions respectively. σu describes the skew of
the vector field in the ∂u direction while moving in the ∂v direction and σv the
skew in the ∂v direction while moving in the ∂u direction.

6.1 More Descriptive Invariants

Even if the above discussed set of scalar invariants constitute a complete set
of scalar invariants for Γ3, they are not necessarily the ones that have largest
descriptive value. As any invertible transformation of the scalar invariants give
rise to a new complete set of scalar invariants, we will develop a set of invariants
that are closer to what have been used in other work about moving images.

The acceleration invariants {au, av} could instead be described in a polar
coordinate system:

a =
√

(au)2 + (av)2, aθ = arctan(av/au), (20)

here a is the magnitude of the acceleration, an aθ the angle relative to the ∂u

direction. The invariants, δu, δv, σu, σv describes how ∂s changes along motions
in the spatial plane. Observe that the vectors in the vector field {∂s} always
have unit length in the temporal direction, therefore the vector field restricted
to a certain spatial plane can be projected onto that plane without losing any
essential information. The matrix:

D =
(

δu σu

σv δv

)
(21)

is the rate of strain tensor for that projected vector field and it might be more
useful to describe the invariants in terms of the Cauchy-Stokes decomposition
theorem [12]:

D =
σu − σv

2

(
0 1
−1 0

)
+

δu + δv

2

(
1 0
0 1

)
+

1
2

(
δu − δv σu + σv

σu + σv δv − δu

)
(22)

=
curlD

2

(
0 1
−1 0

)
+

divD

2

(
1 0
0 1

)
+

defD
2

Q(φ)−1

(
1 0
0 −1

)
Q(φ). (23)

First the matrix can be decomposed in an anti symmetric and a symmetric part
where the coefficient of the anti symmetric part is called the curl that describes
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the rotational component of the vector field. The symmetric part can in turn
be decomposed in a multiple of the identity matrix, the divergence part that
describe the dilation component of the vector field, and a symmetric matrix with
zero trace. The remaining symmetric component of the matrix can be described
in terms of the deformation, i.e. an area preserving stretching in one direction
combined with shrinking in the orthogonal direction, and the direction φ of the
stretching relative to the direction of ∂u.

6.2 Choice of Gauge

For Galilean 2 + 1 dimensional geometry isophotes are typically 2 dimensional
surfaces. There are two generic cases: points where the isophote surface cuts
the spatial surface through the point, and points where the isophote surface is
tangent to the spatial surface through the point. The first case can be interpreted
as motion of isophote curves in the image, and the second case as creation,
annihilation or saddle points.

6.3 Tangent Gauge

Our next task is to define an adapted frame for points where the isophote surface
cuts the spatial surface. For the spatial plane we can reuse the tangent gauge for
E2 in Section 4.1. Starting from an arbitrary frame i, we first adapt the spatial
sub frame {∂x, ∂y}, to the gradient and tangent direction in the spatial plane: ∂t

∂u

∂v

 =
1√

f2
x + f2

y

1 0 0
0 fy −fx

0 fx fy

  ∂t

∂x

∂y

 = Ai. (24)

The spatio-temporal vector ∂s must have unit length in time to be part of a
Galilean frame. By requiring ∂s to lie in the spatio-temporal tangent plane, i.e.
fs = 0, it is constrained in one direction. The adapted spatio-temporal direction
must have the form:

∂s = ∂t + β∂u + γ∂v,

in terms of the new frame. Using 0 = fs = ft + γfv and solving for γ we get
that γ = −ft/fv. Still we have one undetermined degree of freedom β ∈ IR. For
each choice of β we have a plane spanned by {∂s, ∂v}. The image restricted to
such a plane is a function on Γ2 and can be studied by the methods from Section
5.1. From Theorem 2 there are two scalar invariants: acceleration a = −fss/fv

and divergence δ = −fsv/fv. We can see that acceleration becomes a quadratic
function of β and thus the gauge can be fixed by finding a β s.t. a(β) is an
extremum, i.e. by solving ∂βa(β) = 0 for β, which gives:

βa =
ftfuv

fvfuu
− ftu

fuu
. (25)

Which is defined as long as fuu 6= 0, i.e. as long as the isophote curvature
in the spatial plane is non-vanishing. It can be shown that requirement of an
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acceleration extrema is equivalent to requiring fsu = 0 i.e. finding a β that
diagonalizes the Hessian matrix in the {∂s, ∂u} plane. We will also see that this
choice of gauge makes the direction of the spatial tangent, ∂u, constant along
∂s, i.e. ρ = 0. From this requirement Guichard [9], derived the same gauge as we
use here.

Another choice of spatio-temporal gauge can be found by studying the di-
vergence as a function of β. The divergence is a linear function of β and the
disappearance of the divergence, δ(β) = 0, is a natural way to fixate the gauge,
giving:

βδ =
ftfvv

fvfuv
− ftv

fuv
. (26)

This is defined as long as fuv 6= 0, i.e. when the flow line curvature in the spatial
plane is non-vanishing. It can be shown that the disappearance of the divergence
is equivalent to requiring that fsv = 0, i.e. finding a β such that the Hessian in
the {∂s, ∂v} plane is diagonalized.

Using (25) and (24) we find the attitude matrix for the acceleration based
Γ3 tangent gauge, ∂s

∂u

∂v

 =

1 ftfuv

fvfuu
− ftu

fuu
− ft

fv

0 1 0
0 0 1

  ∂t

∂u

∂v

 = BAi. (27)

The connection matrix can then be found by a tedious but elementary calculation
using (3). Using notation from our general discussion about Γ3 invariants the
elements in the connection matrix (19) becomes:

c01 = au ds + δu du + σu dv, c02 = av ds + δv dv, c12 = κ du + µdv. (28)

Observe that the skew invariant σv that describe the skew in the gradient di-
rection while moving in the tangent direction, disappear. The spatio-temporal
rotation of the frame in the spatial plane ρ disappears as well. We use the con-
ventional notation κ = κu, µ = κv, for isophote and flow line curvature. We list
the resulting scalar invariants in the following theorem.

Theorem 4. A complete set of scalar invariants for scalar functions on Γ3 at
points where the gradient and isophote curvature are non-vanishing are acceler-
ation in the tangent and gradient direction,

au =
fssfuv

fvfuu
− fssu

fuu
, av = −fss

fv
, (29)

divergence in the tangent and gradient direction and skew in the gradient direc-
tion while moving in the tangent direction,

δu = −fsuu

fuu
, δv = −fsv

fv
, σu =

fsvfuv

fvfuu
− fsuv

fuu
, (30)

as well as isophote and flow line curvature, (see Theorem 1).
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The invariant av, is also found in [9] and is denoted accel. The reasoning
leading to Theorem 4 can be repeated for the divergence based tangent gauge
(26).

Theorem 5. A complete set of scalar invariants for scalar functions on Γ3 at
points where the gradient and flow line curvature are non-vanishing are acceler-
ation in the tangent and gradient direction,

au =
fssfvv

fvfuv
− fssv

fuv
, av = −fss

fv
, (31)

divergence in the tangent and gradient direction, skew in the gradient direction
while moving in the tangent direction,

δu =
fsufvv

fvfuv
− fsuv

fuv
, δv = −fsu

fv
, σu = −fsvv

fuv
, (32)

and isophote and flow line curvature, (see Theorem 1).

6.4 Hessian Gauge

On points where the isophote surface is tangent to the spatial surface, the tangent
gauge is not defined. As long as the Hessian is non-degenerate, which generically
is the case, we can define an adapted Γ3-frame, {∂r, ∂p, ∂q} that diagonalize the
Hessian, i.e. fpq = frp = frq = 0. Using the fact that the spatio-temporal vector
in the adapted frame must be on the form,

∂r = ∂t + β∂x + γ∂y. (33)

Starting by diagonalizing the Hessian in the spatio-temporal direction we get
the constraints frx = fry = 0, and by using (33) and solving for β and γ, we get

β =
ftyfxy − ftxfyy

fxxfyy − f2
xy

, γ =
ftxfxy − ftyfxx

fxxfyy − f2
xy

. (34)

This gives the first part of the attitude transformation, a spatio-temporal shear
A. If we project ∂r on the spatial plane we get the same vector field as when
the optical flow constraint equation is used on the gradient of the image [17].
As the next step the frame must be rotated in the spatial plane s.t. the spatial
Hessian is diagonalized. Here we can use the results for the Hessian gauge for
E2 reviewed in Section 4.2. Combining these steps we get,∂r

∂p

∂q

 =

1 0 0
0 cos φ − sinφ
0 sinφ cos φ

 1 β γ
0 1 0
0 0 1

  ∂t

∂x

∂y

 = BAi, (35)

where tan 2φ = fxy/(fyy−fxx). We proceed using (3) and the same reasoning as
for the tangent based frames in the preceding section and arives to the folowing
theorem.
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Theorem 6. A complete set of scalar invariants for scalar functions on Γ3 at
points where the Hessian is non-degenerate are as follow:

ap = −frrp/fpp aq = −frrq/fqq

δp = −frpp/fpp δq = −frqq/fqq

σp = −frpq/fpp σq = −frpq/fqq

ρ = frpq/(2fpp − 2fqq)
κp = fppq/(2fpp − 2fqq) κq = fpqq/(2fpp − 2fqq).

(36)

Observe that in contrast to the tangent based gauge systems the Hessian
gauge has all the scalar invariants listed in (19).

7 Conclusion and Discussion

In this paper we have developed a systematic theory about local structure of
moving images in terms of Galilean differential invariants. We have argued that
Galilean invariants are useful for studying moving images as it disregard constant
motion that typically depends on the motion of the observer or the observed ob-
ject, and only describe relative motion that might capture surface shape and
motion boundaries. The set of Galilean invariants for moving images also con-
tains the Euclidean invariants for (still) images.

Comparing to using optic flow as the basic element for describing image mo-
tion, the above suggested theory is completely bottom up and local, while optic
flow is based on trying to directly interpreting the image motion in terms of (the
projection of) motion of object surface points. The estimation of optic flow is
non-local as it typically is based on gathering statistics about low level features in
a small spatio-temporal surrounding. There are also Galilean differential invari-
ants that can capture creation and disappearance of image structure, situations
that are not covered by the concept of optic flow.

Experimental work is of course needed for evaluating how useful the suggested
theory is for finding structure in real image sequences. Spatio-temporal images
derivatives cannot be measured in a point, an integration over a non-vanishing
spatio-temporal volume is needed [7], i.e. we need filters for measuring deriva-
tives. As there are no localized filters that are invariant w.r.t. Galilean shear [5], a
family of velocity adapted filters is needed. For computing a Galilean differential
invariant, the velocity adapted filter used for measuring it should have the same
spatio-temporal direction as the spatio-temporally directed gauge coordinate for
the invariant. This could either be implemented by searching over a precom-
puted set of spatio-temporally directed derivative filters or by iteratively adapt
the spatio-temporal direction of the filter. It should be noted that in general,
gauge adapted derivative filters can be found for several spatio-temporal direc-
tions at a point, i.e. for real image sequences the invariants can be multi-valued.
This can be the case for e.g. transparent motion.
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