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Abstract. We analyze the least–squares error for structure from mo-
tion (SFM) with a single infinitesimal motion (“structure from opti-
cal flow”). We present approximations to the noiseless error over two,
complementary regions of motion estimates: roughly forward and non–
forward translations. Experiments show that these capture the error’s
detailed behavior over the entire motion range. They can be used to
derive new error properties, including generalizations of the bas–relief
ambiguity. As examples, we explain the error’s complexity for epipoles
near the field of view; for planar scenes, we derive a new, double bas–
relief ambiguity and prove the absence of local minima. For nonplanar
scenes, our approximations simplify under reasonable assumptions. We
show that our analysis applies even for large noise, and that the projec-
tive error has less information for estimating motion than the calibrated
error. Our results make possible a comprehensive error analysis of SFM.

1 Introduction

A structure–from–motion (SFM) algorithm has two tasks: matching the 3D fea-
tures across different images, and estimating the camera motion and 3D struc-
ture. This paper reports progress toward a comprehensive analysis of estimation.

Under standard assumptions, the goal of an “optimal” estimation algorithm
is to find the minimum of the least–squares image–reprojection error [8], and
the shape of this error as a function of the estimates determines the intrinsic
problem that the algorithm solves. Here, we analyze this shape for SFM with a
single infinitesimal motion (“structure from optical flow”).

Little is known about the least–squares error. Yet, without understanding
it, one can’t predict when algorithms will succeed or fail—for instance, when
bundle adjustment [24] will find the optimal least–squares estimate rather than
a bad estimate at a false local minimum. Given some understanding, algorithms
can avoid local minima and compute estimates more reliably, as shown in [18][3].

Previous research on estimation (as opposed to geometry) in SFM focussed on
the bas–relief ambiguity [1][4][22][10] [14] [7][18][3][23][9][6]. Other results include
the proof in [3] that the error is singular when the epipole estimate coincides
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with an image point, and a semi–quantitative description [18] of the error over a
linear slice through the plane of all epipole estimates. None of this work comes
close to giving a detailed picture of the least–squares error.

In this paper, we present approximations to the noiseless error over two,
complementary regions of motion estimates: roughly forward and non–forward
translations. Together, these approximations describe the whole error. They re-
produce its detailed shape, yet are simple enough to be useful for understanding
it. We believe that they make it possible to study the least–squares error in
depth, and we illustrate this by deriving several new properties of the error.

As in many previous analyses, e.g., [7][14][3], our theoretical discussion as-
sumes infinitesimal motion and zero noise. Experiments show that the theory
also works for large noise. We study calibrated cameras, taking the focal length
as 1 without loss of generality, and also present results for projective SFM. For
lack of space, all proofs are omitted. They can be found in [17].

1.1 Preliminaries

The standard least–squares error for infinitesimal motion (or optical flow) is [14]

ELS (T, ω, {Z}) ≡
Np∑

m=1

∣∣∣∣∣∣
dm − Z−1

m (Tzpm− [Tx; Ty]) −
∑

a∈{x,y,z}
ωar(a) (pm)

∣∣∣∣∣∣

2

.

(1)

Here Np is the total number of scene points, pm ≡ p1m ≡ (xm; ym) is the mth
image point in the first image, dm ≡ p2m − p1m is the mth measured flow
from image 1 to 2, the Zm are the 3D depth estimates, T is the translation
estimate, ω ≡ (ω(x); ω(y); ω(z)

)
is the estimate of the infinitesimal rotation, and

the r(x) (p), r(y) (p), r(z) (p) are the rotational flows at the image point p due
to unit rotations around the x, y, or z axes: r (p) ≡
[
r(x) (p) , r(y) (p) , r(z) (p)

] ≡
[(−xy

− (1 + y2
)
)

,

(
1 + x2

xy

)
,

(−y
x

)]
∈ �2×3.

(2)

We study an effective error E (e) ≡ min{Z},ω ELS (T, ω, {Z}), with e the epipole.

Definition 1.

Define the cross–product for vectors v, v′ ∈ �2 by v × v′ ≡ vxv′
y − vyv′

x.
Define the error vector ε ∈ �Np by

εm (e) ≡ pm − e
|pm − e| × dm. (3)

Define the 3 rotational contributions to ε, Ψ (a) (e) ∈ �Np , a ∈ {x, y, z}: Let
Ψ

(a)
m ≡ ((pm − e)/ |pm − e|)×r(a) (pm) and Ψ (e) ≡ [Ψ (x), Ψ (y), Ψ (z)

] ∈ �Np×3.

Define the projection Π (e) ≡ 1Np − Ψ (e)
(
ΨT (e) Ψ (e)

)−1
ΨT (e) ∈ �Np×Np ,

where 1Np
denotes the Np × Np identity matrix.
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Proposition 1. [19][20] Assume the candidate epipole e does not coincide1

with any image point pm. Then

E (e) ≡ min
{Z},ω

ELS (T, ω, {Z}) = εT (e) Π (e) ε (e) . (4)

Remark 1. The definition of Π (e) shows that it cancels the rotational contri-
butions to ε. Thus, for noiseless data E (·) does not depend on the value of the
true rotation ωtrue, and we are free to take ωtrue = 0 in analyzing it. We do this
for the rest of the paper, without loss of generality.

For noiseless images, we get a more explicit expression for E (e) by sub-
stituting the ground truth for the flow dm into the result of Proposition 1:

Proposition 2. Assume ∀m, e �= pm, as in Proposition 1. Then

E (e) = T 2
true,z

∑

m

(
∆̂⊥

m,e · (Z−1
m 12 − rmΩ

)
(e − etrue)

)2
, (5)

with Ω ≡
(
∑

n

rT
n

(
∆̂⊥

n,e∆̂
⊥T
n,e

)
rn

)−1(∑

m

Z−1
m rT

m

(
∆̂⊥

m,e∆̂
⊥T
m,e

))
∈ �3×2,

(6)

and ∆m,e ≡ pm − e, ∆̂m,e ≡ (pm − e) / |pm − e|, v⊥ ≡ (−vy; vx).

Remark 2. Each summand in (5) is proportional to |e − etrue|2, so E (e) is con-
tinuous at e = etrue. This gives a direct proof of the result of [3].

2 Forward Motion: e in or near the Image

We first analyze E (e) for candidate epipoles in or near the image, with |e| ∼
<

θFOV/2 radians, where θFOV gives the angular extent of the image points. We
refer to this as the forward region. The true epipole is not constrained.

Previous results. For e near the image points, [18][3] show that E (e) typically
is complex and has local minima. Also, [3] proved: E (e) is singular when e
coincides with an image point and e �= etrue; E (e) is continuous at e = etrue.

The singularity is not enough to explain the minima: The error can be singu-
lar at an image point and yet behave smoothly a short distance away (Figure 1d).
To explain them, one must understand what causes the singular effects to extend
far from the image points, so that effects from different points can interact.

To state this another way, the error’s singularity at an image point reflects
the known sin2 θ dependence on the angle between the hypothesized epipolar
direction and the observed translational flow. Thus, the singularity at the image
point comes from a known property of the error around an image point and does
not give a new explanation of the error’s behavior around the point.
1 If it does, the expression for min{Z},ω ELS (T, ω, {Z}) must be modified slightly.

Strictly, our formulas in e aren’t valid at Ttrue,z = 0, but they are easily extended.
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Fig. 1. Contour plot of error for e in the field of view. The structure comes from PUMA
[12] and etrue = (0.16; 0.37). The 3D depths are shown at the image points. (a): E(e),
with 4 minima at ‘x’; (b): Projective error, with 4 marked minima; (c): E(e) for noisy
images, with σnoise = 0.2dmed (see Fig. 7); (d) Closeup of E(e) around an image point,
showing that the singularity quickly becomes invisible.

2.1 Forward Analysis

Remark 3. The singularity of E (e) at an image point pk causes it to have two
local minima on an infinitesimal circle around the point. In a region where E (e)
behaves smoothly, it has a single minimum on an infinitesimal circle. Thus, we
analyze E (e), and its minima, on small circles centered on the image points. Let
ρk be the radius of the circle Ck around pk. A particular limit turns out to give
a useful approximation (Enear in Proposition 3).

Definition 2 (Near–point limit). Define the limit ρk
near−→ 0 by (ρk −→

0, Np −→ ∞ for fixed ρkNp and θFOV), where we stipulate that image–point
sums

∑Np

m=1 are Θ (Np) as Np −→ ∞.



The Least-Squares Error for Structure from Infinitesimal Motion 535

Remark 4. For real images, the stipulation amounts to assuming that sums over
the image points have no unexpected cancellations. This holds unless the image
points cluster near a line or the 3D depths have a few outliers at small depths.

Proposition 3 (Enear). In the limit ρk
near−→ 0, we have the asymptotic estimate

E (e) ≈ Enear (e) + O
(
ρk, N−1

p

)
on Ck, where Enear (e) ≡ T 2

true,z |pk − etrue|2 ×


cNp + (ρkNp)



 a
|pk − etrue| + N−1

p

∑

m�=k

ãm

|pk − pm|



 ∆̂k,e − ∆̂T
k,eQ∆̂k,e



 .

(7)

The O(1) c ∈ �, a, ãm∈ �1×2, Q ∈ �2×2 don’t depend on e, |pk − etrue|, ρkNp.

We rewrite our approximation as Enear = γ+α cos (θ − φ1)+β cos2 (θ − φ2) ,
where α, β give the linear and quadratic terms in (7), and (cos θ; sin θ) ≡ ∆̂k,e.

Lemma 1. Let f (θ) ≡ a cos2 (θ − φ1) + cos (θ − φ2). For any values of φ1, φ2,
the function f(θ) has one minimum for |a| < 1/2 and two minima for |a| > 1.

Thus, the value of |β/α| determines how many minima Enear has on the
circle Ck and, from Remark 3, the rate of decrease of |β/α| with ρk (i.e., with
the distance from pk) determines how far the singular effects due to pk extend.

Experiments. We compared Enear with the true error’s behavior for 1200 syn-
thetic flows generated from real structures. We measured the singularity of E (e)
on a circle by: the number of its local minima, and the ratio of its second funda-
mental (3rd Fourier coefficient) to its standard deviation. This second measure
indicates the singularity’s size. Figures 2a,b verify that all but a small frac-
tion (3%) of the one–minimum results have |β/α| ≤ 1, and all but 1.7% of the
two–minimum results have |β/α| ≥ 1/2. Figure 2c shows that the “size” of the
singularity grows roughly linearly with |β/α| until it saturates. These results
demonstrate that our analysis predicts the error’s behavior very well.

One can use Enear to understand the factors causing the error’s complexity
[17]. Figure 3 confirms our predictions from (7): the error behaves smoothly
near image points close to etrue (Fig. 3a), and is more likely to have a complex
behavior near an isolated image point (Fig. 3b) or one with extreme 3D depth
(Fig. 3c). Also, experiments show that the fraction of “singular” results decreases
roughly like N0.5

p , and the size of the singular fluctuations in the error decreases
roughly like N−1

p , in agreement with the behavior of |β/α|, see [17].

3 Sideways Motion: |e| > θFOV/2

Preliminaries. Define A ≡ T true,z (ê × etrue), B ≡ T true,z (1 − ê · etrue/ |e|),
with ê ≡ e/ |e|. The A, B capture all dependence on the true translation Ttrue.

It is convenient to use an image coordinate system that rotates around the
image center with the candidate epipole e such that e =

( |e| ; 0
)
.



536 J. Oliensis

(a) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

1400

1600

1800
Histogram of β/α for 1−−minima

β/α

T
ot

al
 1

−
−

m
in

im
a:

  1
58

17

(c) 0

1

2

3

4

5

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0

200

400

600

800

1000

1200

1400

 β/α < 5

Histogram of normalized 2nd fundamental of error vs  β/α 

Normalized 2nd fundamental

0 0.5 1 1.5 2
0

1000

2000

3000

4000

5000

6000

7000

β/α histogram for 2−−minima points

 β/α < 2
50 100 150 200

0

1000

2000

3000

4000

5000

6000

7000

Total of 18948 points

β/α >  2 (b)

Fig. 2. Histograms of two measures of the complexity of E(e). (a) |β/α|, one minimum
results; (b) Two minima results, separately for |β/α| < 2 and |β/α| > 2. (c) Normalized
second fundamental of E (e) for |β/α| < 5.
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Fig. 3. Histograms, plotted separately for circles Ck where E(e) had two minima (dot-
ted curves) and one minimum. (a) Epipolar–distance ratio (Npρk)−1|pk−etrue|; (b) Iso-
lation measure ρk

∑
m�=k |pm − pk|−1; (c) 3D depth ratio |Zkd̂true|/ maxm |Zmd̂true|,

where Zk ≡ (Z−1
k 12 − rkΩ) and d̂true ≡ (pk − etrue)/|pk − etrue|

We represent the inverse depths Z−1
m as a sum of a linear component and a

nonlinear component. We write Z−1
m ≡ nz +nxxm +nyym +Z−1

NL,m, where Z−1
NL,m

is the nonlinear and Z−1
L,m ≡ nz + nxxm + nyym is the linear component of the

structure, and where we define these components uniquely from

0 =
∑

m

Z−1
NL,m =

∑

m

xmZ−1
NL,m =

∑

m

ymZ−1
NL,m. (8)
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We refer to n≡ (nx; ny; nz) above as the planar normal, since Z−1
m = nz +

nxxm + nyym for a planar scene neglecting noise. We define the planar epipole
n ≡ (nx; ny) /nz by analogy with the epipole e, and ñz ≡ nz − nx/|e|.

Definition 3 (Limit of zero field of view (FOV)). Let θFOV be the angular
extent of the region spanned by the image points. We define the zero–FOV limit
by writing the image points as pm = λFOVp∗

m and taking λFOV −→ 0 keeping
the p∗

m and Z−1
m fixed. We denote the limit by θFOV −→ 0 or λFOV −→ 0.

The classical result is on the bas–relief ambiguity [7][14][15].

Theorem 1 (Jepson/Heeger/Maybank (JHM)). Assume the image points
do not lie on a line, and that e is finite and |e| > 0. In the limit of zero field
of view, the noiseless least–squares error for infinitesimal motion is given by
E (e) = T 2

true,z (ê × etrue)
2∑Np

m=1 Z−2
NL,m.

Remark 5 (Limitations of the JHM Theorem).

The JHM result models the error only for θ−1
FOV � |e| � θFOV and does not

capture any of the error’s dependence on e ≡ |e| (it cannot be used to analyze
the minima); It gives no information about the error on the line e = tetrue, t ∈
(−∞,∞)—despite the fact that the true epipole lies on it; It says nothing about
the error for |etrue| ∼ O (θFOV); It says nothing about the error for planar scenes
or the effect on E from the linear scene component, which is always important.

3.1 New Analysis

Definition 4 (Sideways limit). The sideways limit e
sideways−→ ∞ is defined by

(
λFOV −→ 0, e −→ ∞ for fixed κ ≡ eλFOV,p∗

m, A, B, ñz, ny, Z−1
NL,m

)
,

where the zero–FOV limit λFOV −→ 0 and the p∗
m are given in Definition 3.

Theorem 2 (Main Theorem). The approximation Eside(e) in (13) gives an
asymptotic estimate of E in the sideways limit:

E(e) − Eside(e) = O (E/e)
(
e

sideways−→ ∞
)

. (9)

Remark 6. The sideways limit fixes ñ and B ≡ Ttrue,z (1 − etrue,x/e) which de-
pend on e. We do this since we want Eside(e) to remain a good approximation
when |n| and |etrue| are as large as e, and since this simplifies our approximation
and makes it display the two–fold ambiguity of SFM for planes [14].
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To derive Eside(e), we neglect effects suppressed by factors of θFOV and
θFOV/|e|. First, we must “pre-subtract” the leading rotational contribution from
ε in (3). This is necessary since E(·) is given by a subtraction of two terms (due
to the rotation cancellation from Π) and we need to ensure that its leading
dependence comes from the leading dependencies of the individual terms. After
this “pre–subtraction,” Π must be replaced by Π⊥, where the latter annihilates
the remaining subspace of rotational contributions. Define

La,b
Π ≡

{
e

|p − e| (ya − 〈ya〉)
}T

Π
(side)
⊥

{
e

|p − e|
(
yb − 〈yb

〉)}
, (10)

Za,b
Π ≡

{
e

|p − e|y
aZ−1

NL

}T

Π
(side)
⊥

{
e

|p − e|
(
yb − 〈yb

〉)}
, (11)

Z̃a,b
Π ≡

{
e

|p − e|y
aZ−1

NL

}T

Π
(side)
⊥

{
e

|p − e|y
bZ−1

NL

}
, (12)

where Π
(side)
⊥ equals Π⊥ evaluated in the sideways limit,{V } denotes a vector

in �Np with entries Vm, α ≡ Any − Bñz, β ≡ Bny + Añz. Then

Eside ≡ α2L
(1,1)
Π + β2L

(2,2)
Π − 2αβL

(1,2)
Π (13)

−2AβZ
(0,2)
Π + 2AαZ

(0,1)
Π + 2BβZ

(1,2)
Π − 2BαZ

(1,1)
Π

+A2Z̃
(0,0)
Π + B2Z̃

(1,1)
Π − 2ABZ̃

(1,0)
Π .

[17] gives explicit formulas for the La,b
Π , Za,b

Π , and Z̃a,b
Π in terms of the image

and structure moments

µa,b ≡ e2
∑

m

xa
myb

m/ |pm − e|2 , σa,b ≡ e2
∑

m

Z−1
NL,mxa

myb
m/ |pm − e|2 ,

Sa,b ≡ e2
∑

m

(
xa

myb
mZ−2

NL,m

)
/ |pm − e|2 .

Discussion. Our result nicely separates the dependencies on the various param-
eters. For example, Eside depends on etrue only through the quantities A and
B. It depends on e just through B, ñz, and the dot products La,b

Π , Za,b
Π , and

Z̃a,b
Π , where the first two are linear in e−1 and the dot products can be approxi-

mated by simple ratios of quadratic expressions in e. One can easily read off from
our formulas which contributions dominate at small FOV. For planar scenes (or
the linear scene contribution), all the structure/motion unknowns appear in the
leading factors; the La,b

Π depend only on the known image coordinates. Eside can
be shown to respect the planar two–fold ambiguity.

Our result depends on the nonlinear part of the scene through the structure
moments σa,b, for 2 ≤ a + b ≤ 3, and on Sc,d. Thus, the error’s dependence on
the scene can be approximated using 15 parameters to describe the scene. Just 6
are usually enough. Our expression for Eside often simplifies dramatically. This
is because our approximation works for many types of scenes and motions, and
we can often neglect most of the terms for a particular scene/motion.
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Fig. 4. Sideways error. (1): Planar example with double bas–relief ambiguity,
etrue= (−6.9; 7.2) n = (0.62; 0.64); (2): Planar example showing lack of minima,
etrue= (−0.69; 0.72) n = (0.81; 0.74); (3): Rocket structure [5], etrue = (−0.14; −0.045).
(a): True E(e); (b): Simple planar approximation α2L

(1,1)
Π ; (3B): Simple approx. (15).

3.2 Some Examples of Consequences

Planar Scene, Non–forward true motion; large planar slant. Assume an im-
age pair with θFOV � 1 (small FOV), |etrue| � 1 (sideways true motion),
and |n| ≡ |(nx; ny)/nz| � 1 (large slant). We assume e � 1, excluding e <

|etrue| and e < |n| (large–e assumption). Then E (e) ≈ α2L
(1,1)
Π , where α2 ≈

T 2
true,z (ê × etrue)

2 (ê × n)2 and L
(1,1)
Π is roughly constant. The error is small on

two lines—a double bas–relief ambiguity. Figure 4(1) illustrates this new effect.

Planar Scene, Non-sideways true motion; small planar slant. Assume θFOV � 1
(small FOV), 1 � e (large e), |etrue| � 1 (forward true motion), and |n| �
1 (small slant). Under these conditions, our approximation has no false local
minima in a region e ≥ ethresh, where ethresh ∼ O(1).

One can show that the derivative with respect to e of our asymptotic estimate
gives an asymptotic estimate of the derivative of E (e). Thus, in the sideways
limit E (e) has no false local minima for sufficiently large e. Figure 4(2) shows
an example, comparing the true error to our simple approximation above.

Symmetry. The image moments µa,b divide into two categories: the even mo-
ments, such as µ2,0, µ0,2, µ2,2, that involve sums over even powers and nonneg-
ative terms only, and the odd moments. For randomly distributed image points,
the odd µa,b are suppressed by roughly 1/

√
Np compared to the even µa,b.
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With many correspondences, the image usually has some rotational symme-
try and we can neglect the odd µa,b to a good approximation. Then, E ≈ Eside

≈ α2 e2µ0,2µ2,2

e2µ2,2 + µ0,2
+ β2

(
µ0,4 − µ2

0,2

Np

)
(14)

− 2A

(
βσ0,2 + α

eµ0,2

e2µ2,2 + µ0,2
σ1,1

)
+ 2B

(
βσ0,3 − α

e2µ2,2σ0,2 − eµ0,2σ1,2

e2µ2,2 + µ0,2

)

+ A2S0,0 + B2S0,2 − 2ABS0,1 − (Aeσ1,1 − B (eσ1,2 + σ0,2))
2

e2µ2,2 + µ0,2
− B2 σ2

1,1

µ2,0
.

Also, symmetry makes the even µa,b depend weakly on the epipolar direction ê
[17], which give a further simplification.

In the same way as for the µa,b, we can estimate the relative sizes of the
structure–dependent moments S0,a and σa,b. All the σa,b will be small, for any
direction ê, if the Z−1

NL have no good approximation in terms of a cubic poly-
nomial (noncubic condition). Also, [17] argues that the mixed terms combining
the nonlinear and linear structure components can often be neglected. Assuming
this and the noncubic condition, we get the simple estimate

E(e) ≈ Eside(e) ≈ α2L
(1,1)
Π + β2L

(2,2)
Π − 2αβL

(2,1)
Π + A2S0,0 + B2S0,2. (15)

Our experiments show that (15) accurately describes the error for our sequences.
In addition to the conclusions above, [17] uses our estimate to generalize the

JHM theorem [7][14] and to extend the results of [18] to planar scenes.

Experiments. We tested Eside against the true error, using synthetic structures
and structures extracted from five real sequences (PUMA[12], Rocket [5], CMU
CASTLE, and two of our indoor sequences). We show only a few results.

Figure 5 compares E(e) to our simplest approximation (15), which has slight
problems only for the PUMA example. Figure 5 also shows Eside for this example;
it is indistinguishable from the true error. For the Rocket structure, we compared
the global minimum positions for the true error, Eside, and (15). Within mea-
surement error, they were identical. Fig. 6(1,2) shows that our symmetry–based
approximation (14) gives good results with just 192 and 132 image points.

4 Projective Geometry

Suppose one fixes the camera matrix for image 1 to be (13,03). The projective
transforms that leave this camera matrix unaltered change the structure by
adding an arbitrary plane to it or scaling it [16]. The real projective ambiguity
is just this freedom to scale or add a plane. Since scenes that differ only in their
planar component are equivalent in projective geometry, the linear component
Z−1

L,mof the scene cannot make a contribution to the least–squares error. In effect,
only the nonlinear terms contribute to Eside.
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Fig. 5. (1): CMU Castle, etrue = (5.78; 8.16); (2): Indoor 1, etrue = (0.11; 0.16);
(3): Indoor 2, etrue = (−0.125; −1.49); (4): PUMA, etrue = (10; −.025).
(a): Simplified approximation (15); (b): True error; (C): Eside.

[17] shows this directly. For projective SFM and infinitesimal motion, one can
define a projective error Eproj (e) ≡ εT Πprojε as for the Euclidean case, where ε
is the same as in (3). The same arguments as before give a sideways asymptotic
estimate: Eproj (e) ≈ A2 {ZNL}T

Π⊥proj {ZNL}

−2AB {ZNL}T
Π⊥proj {yZNL} + B2 {yZNL}T

Πproj {yZNL} . (16)

Thus, the error for projective SFM is simpler than the Euclidean error. This
simplicity comes at a cost [18]. At large e, one can show that the projective
error on the line e = tetrue has no quadratic growth with e as in the Euclidean
error. This implies that the projective error gives less information to estimate
the epipole. Figure 6(3B) compares the Euclidean and projective errors for the
same image pair.
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Fig. 6. (1): Extended PUMA sequence, etrue = (0.13; −0.08); (2): Extended Rocket,
etrue = (−1.0; −3.9); (3): Projective error for PUMA, same images as in Figure 5(4).
(a): Approximation (14); (b): True error; (3A): True projective error; (3B): Projective
(dashed) and Euclidean errors on the line ey = 0, the “bas–relief valley” in (3A).

In the forward region, the projective analysis is similar to the Euclidean one.
Experiments confirm that the results are also similar, see Figure 1.

5 Noise

We report experiments on noisy images. We ran a standard two–image algorithm
to estimate the structure/motion and used the result to compute Eside.2 Eside
continues to model the true error well, despite our using a larger than normal
noise. The noise is large enough that our two–image routine usually returns bad
T estimates and the noisy error looks quite different from the noiseless one.

For noisy images, we cannot assume without loss of generality that the true
rotation is zero. Fortunately, rotation has a small effect on the error [18][25].

We have not studied the forward noisy error carefully, but experiments (e.g.,
Figure 1) indicate that noise increases its complexity, as might be expected [17].

6 Conclusion

We studied the least–squares error for infinitesimal motion, giving two simple
asymptotic estimates of the error which capture its detailed behavior over the
2 Our rationale is that the error depends on the observed flow, which is modelled

better by the estimated structure and motion than by the ground truth.
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Fig. 7. Noise results. σnoise gives the noise standard deviation, dmed the median size
of the true flow, and θTerr the angular error in in the initial T estimate. (1): Rocket,
etrue = (−0.01; −0.05), σnoise = 0.4dmed, θTerr = 77◦. (2): PUMA, etrue = (0.5; −0.2),
σnoise = 0.3dmed, θTerr = 38◦. (a) Noiseless error; (b) True noisy error; (c) Eside.

entire range of motions. We illustrated the use of these estimates by deriving
new error properties.

For roughly forward translation estimates, we showed by theory and exper-
iment that the error tends to be complex for candidate epipoles near image
points, and that this is more likely when: the true epipole is far from the point;
and/or the point is isolated in the image; and/or the corresponding 3D depth is
small; and/or the number of image points is small. Our experiments show that
the complexity near image points produces local minima, confirming [3][18]. We
pointed out that the previous arguments of [3][18] do not explain the error’s
complexity or local minima.

For non–forward translation estimates, we gave a simple model of the error
for planar scenes. For two special cases, we derived a new double bas–relief ambi-
guity and proved the absence of local minima at large |e|. For nonplanar scenes,
we simplified our approximations under various assumptions, including rough
rotational symmetry of the image and a reasonably “generic” distribution of 3D
depths. Our simplest approximation gives a good model of the least–squares er-
ror in all our noiseless experiments. We analyzed the error for projective SFM,
pointing out that it is flatter than the Euclidean error, and showed by experi-
ments that our analysis remains useful for noisy images.

We believe that our results will lead to an in–depth understanding of the
least–squares error. For example, our sideways asymptotic estimate depends
on just 29 parameters, and often 13 are enough. This suggests that a semi–
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exhaustive search through the space of least–squares errors may be feasible to
determine the pitfalls that algorithms could encounter.
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