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Abstract. We propose a practical abuse-resilient transaction escrow
scheme with applications to privacy-preserving audit and monitoring of
electronic transactions. Our scheme ensures correctness of escrows as
long as at least one of the participating parties is honest, and it ensures
privacy and anonymity of transactions even if the escrow agent is cor-
rupt or malicious. The escrowed information is secret and anonymous,
but the escrow agent can efficiently find transactions involving some user
in response to a subpoena or a search warrant. Moreover, for applica-
tions such as abuse-resilient monitoring of unusually high levels of certain
transactions, the escrow agent can identify escrows with particular com-
mon characteristics and automatically (i.e., without a subpoena) open
them once their number has reached a pre-specified threshold.
Our solution for transaction escrow is based on the use of Verifiable
Random Functions. We show that by tagging the entries in the escrow
database using VRFs indexed by users’ private keys, we can protect
users’ anonymity while enabling efficient and, optionally, automatic de-
escrow of these entries. We give a practical instantiation of a transaction
escrow scheme utilizing a simple and efficient VRF family secure under
the DDH assumption in the Random Oracle Model.

1 Introduction

Massive collection of personal and business data is increasingly seen as a nec-
essary measure to detect and thwart crime, fraud, and terrorism. For example,
all U.S. banks must report transactions over $10,000. Regulations of the U.S.
Securities and Exchange Commission effectively require financial firms to store
all emails in case they are subpoenaed in some future investigation. Government
authorities often demand that financial transactions, internal corporate commu-
nications, and so on be escrowed with law enforcement or regulatory agencies in

� Supported in part by ONR grants N00014-01-1-0837 and N00014-03-1-0961.
�� Part of this work was done while visiting the Applied Cryptography Group at Stan-

ford University.

C. Cachin and J. Camenisch (Eds.): EUROCRYPT 2004, LNCS 3027, pp. 590–608, 2004.
c© International Association for Cryptologic Research 2004



Handcuffing Big Brother: an Abuse-Resilient Transaction Escrow Scheme 591

such a way that the escrow agency can open the data pertaining to some user
within the time period for which a subpoena or search warrant has been issued,
or mine the collected data without a warrant for evidence of suspicious activity.

Existing techniques. Information stored in the escrow agency’s database must
be protected both from abuse by the escrow agency’s employees and from exter-
nal attacks. Unfortunately, existing escrow schemes sacrifice either user privacy,
or efficiency of the escrow operation. Moreover, existing techniques allow mining
of the escrowed data for evidence of suspicious activity only by letting the escrow
agency de-escrow any entry at will.

Key escrow techniques [Mic92, KL95] implicitly assume that escrowed data
are tagged by the key owner’s identity or address. This enables efficient de-escrow
of a subset of records pertaining to some user (e.g., in response to a subpoena),
but fails to protect anonymity of records against malicious employees of the
escrow agency who can learn the number and timing of transactions performed
by a given person, find correlations between transactions of different people, and
so on. On the other hand, if escrows are not tagged, then there is no efficient
procedure for opening the relevant escrows in response to a subpoena. Each entry
in the escrow database must be decrypted to determine whether it involves the
subpoenaed user. This is prohibitively inefficient, especially if the decryption key
of the escrow agency is shared, as it should be, among a group of trustees.

Our contribution. We propose a verifiable transaction escrow (VTE) scheme
which offers strong privacy protection and enables efficient operation of the es-
crow agent. Our scheme furnishes transaction participants with a provably secure
privacy guarantee which we call category-preserving anonymity. We say that two
transactions belong to the same category if and only if they were performed by
the same user and are of the same type (e.g., both are money transfers). An
escrow scheme is category-preserving anonymous if the only information about
any two transactions that the (malicious) escrow agent can learn from the corre-
sponding escrow entries is whether the transactions fall into the same category
or not. The agent cannot learn which category either transaction belongs to.

Of course, a malicious participant may reveal the transaction to the escrow
agent. However, regardless of the user’s transactions with dishonest parties who
leak information to the escrow agent, all of his transactions with honest parties
remain private in the sense of category-preserving anonymity — even if they
belong to the same category as compromised transactions. While it does not
provide perfect anonymity, category-preserving anonymity seems to give out no
useful information, especially if transaction volume is high. (If volume is low,
there may be undesirable information leaks, e.g., the escrow agent may observe
that only one category is ever used, and deduce that only one user is active.)

We present a VTE scheme with two variants. The first variant has an inexpen-
sive escrow protocol, but does not achieve full category-preserving anonymity.
The privacy guarantees it does offer might be acceptable in practice, however.
The second variant achieves category-preserving anonymity at the cost of adding
an expensive cut-and-choose zero-knowledge proof to the escrow protocol.
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Our VTE scheme supports both (1) efficient identification and opening of
escrows in response to a subpoena, and (2) efficient automatic opening of escrows
that fall into the same category once their number reaches some pre-specified
threshold. The scheme is also tamper-resistant in the sense that a malicious
escrow agent cannot add any valid-looking escrows to the database. Finally, our
scheme ensures correctness of the escrow entry as long as at least one participant
in the escrowed transaction is honest. Note that there is no way to ensure escrow
of transactions between parties who cooperate in concealing the transaction.

Our scheme employs Verifiable Random Functions. We show that by tagging
entries in the escrow database using VRFs indexed by users’ private keys, we en-
able efficient and, if necessary, automatic de-escrow (disclosure) of these entries,
while providing category-preserving anonymity for the users. We instantiate our
scheme with a practical construction based on a simple and efficient (shareable)
VRF family secure under the DDH assumption in the Random Oracle Model.

Applications. A VTE scheme can be used in any scenario where transaction
data must be escrowed but should remain private and anonymous. For example,
a financial regulatory agency may collect escrows of all money transfers to ensure
availability of evidence for future investigations of money laundering. Unless a
court warrant is obtained, the agency should not be able to extract any useful
information from the escrows, not even participants’ identities. At the same
time, the automatic opening capability of our VTE scheme can also support a
scenario where the agency needs to identify all transfers which are made from
the same account and share the same type, e.g., all involve a certain organization
or country, or more than a certain amount. These transactions should be secret
and anonymous until their number reaches a pre-specified threshold, in which
case the authority gains the ability to extract all corresponding plaintexts.

Related work. The problem of efficient classification and opening of escrows is
related to the problem of search on encrypted data [SWP00, BCOP03]. In the
latter problem, however, there is no notion of a malicious user who submits in-
correct ciphertexts or interferes with record retrieval. Moreover, their techniques
require the user to generate search-specific trapdoors, while we are also inter-
ested in scenarios where the escrow agent is able to open all escrows in a given
category not because he received some category-specific trapdoor but because
the number of escrows within a category reached a pre-specific threshold.

Paper organization. In section 2, we define verifiable transaction escrow and
describe its security properties. In section 3, we present the simpler variant
of our VTE construction, which is practical but does not achieve full category-
preserving anonymity. In section 4, we present another variant which does achieve
category-preserving anonymity, but employs an expensive cut-and-choose zero-
knowledge protocol. In section 5, we show how to extend either construction to
support automatic de-escrow capability. For lack of space, we omit all proofs
from these proceedings. The full version of the paper, including all proofs, will
be made available on eprint [JS04].



Handcuffing Big Brother: an Abuse-Resilient Transaction Escrow Scheme 593

2 Definition of a Verifiable Transaction Escrow Scheme

A Verifiable Transaction Escrow (VTE) system involves an escrow Agent and
any number of users. We assume that each transaction occurs between a User
and a Counterparty. The two roles are naturally symmetric (users may act as
counterparties for each other), but in some applications the escrow agent may
only be interested in monitoring users (e.g., bank clients), but not the counter-
parties (banks).

We assume that each transaction is adequately described by some bitstring m,
and that there is a public and easily computable function Type, where Type(m)
of transaction m is application-specific, e.g., “this transaction is a money trans-
fer,” or “this transaction is a money transfer between $1,000 and $10,000.” The
category of a transaction is the 〈user identity,type〉 pair.

2.1 Basic Properties of a Verifiable Transaction Escrow Scheme

A VTE scheme is a tuple (AKG, UKG, U1, A, U2, C, U3, J) of the following prob-
abilistic polynomial-time (PPT) algorithms:

• AKG and UKG are key generation algorithms, which on input of a security
parameter τ generate, respectively, Agent’s key pair (kA, pkA) and, for each User,
key pair (kU , pkU ).

• (U1, A) are interactive algorithms which define an escrow protocol. Its aim is to
add an escrow of a transaction to the Agent’s database in exchange for a receipt
which will be later verified by the transaction Counterparty. The protocol runs
between User (U1) and Agent (A), on public input of Agent’s public key pkA.
User’s private input is (kU , m), where m is the transaction description. Agent’s
private input is (kA, D) where D is the state of Agent’s escrow database. User’s
output is a receipt rcpt, and Agent’s output is an escrow item e, which defines
a new state of Agent’s database as D′ = D ∪ {e}.
• (U2, C) are interactive algorithms which define a verification protocol. Its aim
is for the Counterparty to verify the receipt certifying that the transaction was
properly escrowed with the Agent. The protocol runs between User (U2) and
Counterparty (C), on public input (pkU , m, pkA). User’s private input is kU , rcpt.
Counterparty outputs decision d = accept/reject.

• (U3, J) is a pair of interactive algorithms which defines a subpoena protocol. Its
aim is to identify all transactions of a given type in which the user participated,
and only those transactions. The protocol runs between User (U3) and a public
Judge (J), on public inputs (pkU , T, D), where pkU , T identify the 〈user,type〉
category to be subpoenaed, and D is Agent’s database. User’s private input
is kU . Judge has no private inputs. Algorithm J outputs M , which is either
a symbol contempt if the User refuses to cooperate, or a (possibly empty) list
(m1, m2, ...) of transactions of type T involving user pkU .

Completeness. If parties follow the protocol, then every escrowed transaction
can be de-escrowed in the subpoena. In other words, for all keys (kA, pkA) and
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(kU , pkU ) generated by AKG and UKG, and for every m, D, D′, if 〈U1(kU ,
m), A(kA, D)〉(pkA) outputs (rcpt, e) then 〈U2(kU , rcpt), C〉(pkU , m, pkA) out-
puts d = accept and 〈U3(kU ), J〉(pkU , T ype(m), D′∪{e}) outputs M s.t. m ∈M .

For notational convenience, we define predicate Prop(e, m, pkU ) to be true if
and only if 〈U3(kU ), J〉(pkU , T ype(m), D′ ∪ {e}) outputs M s.t. m ∈M .

Verifiability. The escrow agent receives a correct escrow of the transaction as
long as at least one party in the transaction is honest. In particular, a malicious
User has only negligible probability3 of getting an honest Counterparty to ac-
cept in an escrow protocol unless the User gives to the Agent a proper escrow.
Formally, for every PPT algorithms U∗

1 , U∗
2 , for every D, m,

Pr[ Prop(e, m, pkU ) | (kA, pkA)← AKG(1τ ); (kU , pkU )← UKG(1τ );
(rcpt∗, e)← 〈U∗

1 (kU , m), A(kA, D)〉(pkA);
accept← 〈U∗

2 (rcpt∗), C〉(pkU , m, pkA) ] ≥ 1− negl(τ)

Efficient and unavoidable subpoena. The subpoena procedure is unavoid-
able in the sense that the user is either publicly identified as refusing to cooperate,
or all entries in the escrow database which involve the user and the specified type
are publicly revealed. Namely, for every PPT algorithm U∗

3 , for every D′, m, e,
for T = Type(m),

Pr[M = contempt ∨m ∈M | (kA, pkA)← AKG(1τ ); (kU , pkU )← UKG(1τ);
M ← 〈U∗

3 (kU ), J〉(pkU , T, D′ ∪ {e}); Prop(e, m, pkU )] ≥ 1− negl(τ)

Moreover, the subpoena protocol is efficient in the sense that its running time
is linear in the number of escrows of the subpoenaed 〈user,type〉 category in the
database D, rather than in the size of the whole escrow database D.

Tamper resistance. A malicious Agent can’t add entries to the escrow database
which would be identified as transactions involving some user during the public
subpoena process, unless that user created these escrows himself. Namely, for
every PPT algorithm A∗, for random keys kU , pkU generated by UKG, if A∗

has access to user oracles OU1(·, ·), OU2(·, ·, ·), and OU3(·, ·), where OU1(m, pkA)
follows the U1 protocol on (kU , m) and pkA, OU2(m, rcpt, pkA) follows the U2 pro-
tocol on (kU , m, rcpt) and pkA, and OU3(T, D) follows the U3 protocol on kU and
(pkU , T, D), then there is only negligible probability that A∗OU1,U2,U3 (·,·,·)(pkU )
produces T ∗, D∗ s.t. M ← 〈U3(kU ), J〉(pkU , T ∗, D∗) where M contains some
message m∗ s.t. A∗ did not run oracle OU1(·, ·) on m∗ and some pkA.

Category-preserving anonymity. By default, the only information learned
by a malicious Agent about any two instances of the escrow protocol is whether
the two transactions fall into the same category, i.e., correspond to the same

3 We say that a function f(τ ) is negligible if for any polynomial p(·), there exists τ0

s.t. for every τ ≥ τ0, f(τ ) < 1/p(τ ). We denote a negligible function by negl(·).
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〈user,type〉 pair or not. Moreover, neither the transactions opened in the sub-
poena protocol, nor transactions reported to the Agent by some malicious Coun-
terparties, should help the malicious Agent to crack the privacy of transactions
done with honest Counterparties and which were not subpoenaed.

Formally, consider the following game between any PPT algorithms A∗, C∗

and the VTE system. First, polynomially many user keys {(ki, pki)} are gen-
erated by the UKG algorithm. Then, if A∗ has access to flexible user oracles
OU1(·, ·, ·), OU2 (·, ·, ·, ·), and OU3 (·, ·, ·), where OU1(i, m, pkA) follows the U1 pro-
tocol on (ki, m) and pkA, OU2(i, m, rcpt, pkA) follows the U2 protocol on (ki, rcpt)
and (pki, m, pkA), and OU3 (i, T, D) follows the U3 protocol on ki and (pki, T, D),
the following holds:

Pr[ b = b′ | (i0, i1, m0, m1, st, pkA)← A∗OU1,U2,U3 (·,·,·,·)(pk1, ..., pkp(τ));
b← {0, 1}; (rcptb, st

′)← 〈U1(kib
, mb), A∗(st)〉(pkA);

b = ¬b; (rcptb, st
′′)← 〈U1(kib

, mb), A
∗(st′)〉(pkA);

(st′′′)← 〈U2(ki0 , rcpt0), C∗(st′′)〉(pki0 , m0, pkA);
(st′′′′)← 〈U2(ki1 , rcpt1), C∗(st′′′)〉(pki1 , m1, pkA);

b′ ← A∗OU1,U2,U3 (·,·,·,·)(st′′′′); ] ≤ 1
2

+ negl(τ)

where the test transactions (i0, m0) and (i1, m1) and the queries of A∗ to OU1

and OU3 oracles are restricted as follows:
(1) The test transactions are not subpoenaed, i.e., OU3 is not queried on either
(i0, T ype(m0)) or (i1, T ype(m1)).
(2) If any of the 〈user,type〉 pairs involved in the test transactions are seen by
the Agent in some query to OU1 or OU3 , then the two test transactions must
have the same 〈user,type〉 pairs, i.e., if for any β = 0, 1, either OU3 was queried
on (iβ, T ype(mβ)) or OU1 was queried on (iβ, m′

β) s.t. Type(m′
β) = Type(mβ),

then i0 = i1 and Type(m0) = Type(m1).

2.2 Additional Desirable Properties of a VTE Scheme

Automatic threshold disclosure. A VTE scheme may support automatic
opening of escrows involving transactions with the same 〈user,type〉 once their
number reaches some threshold value, pre-set for transactions of this type. We
show an example of such extension in Section 5.

Key management. In practice, a VTE scheme requires a Key Certification
Authority serving as strong PKI. If a user’s key is lost or compromised, the CA
must not only revoke that key and certify a new one, but also reconstruct the
old key to facilitate the subpoena of transactions which were escrowed under
it. To avoid a single point of failure, the CA should implement this key escrow
functionality via a group of trustees using standard threshold techniques. We
stress that although majority of the CA trustees must be trusted, this is not
a severe limitation of the proposed scheme because CA is invoked only when
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a new user enrolls in the system, or when the key of some user is subpoenaed
and he refuses to cooperate. Moreover, the secret keys of the CA trustees need
only be used during reconstruction of some user’s key in the case of key loss
and/or user’s refusal to cooperate with a subpoena, both of which should be
relatively infrequent events. Interestingly, while PKI is often viewed as a threat
to privacy, in our scheme it actually helps privacy. Without PKI, escrow can
only be implemented via a public-key scheme that cannot guarantee both user
anonymity and efficient operation of the escrow scheme.

3 Basic Construction of a VTE Scheme

We present the simpler variant of our VTE scheme. As we explain in section 3.1,
this scheme does not achieve full category-preserving anonymity, but its privacy
protection can be good enough in practice. In section 4, we show a variant of
the same VTE scheme which does achieve full category-preserving anonymity.
Both variants use cryptographic primitives of verifiable anonymous encryption,
verifiable anonymous tagging, and anonymous signatures, which we define and
implement in section 3.2. In section 3.3, we discuss key management issues.

VTE construction overview. In our VTE construction, an escrow consists
of (1) an encryption of the transaction plaintext, (2) a signature, and (3) a
deterministically computed tag which is an output of a pseudorandom function
indexed by the user’s private key and applied to the type of the transaction.
The tags enable the Agent to group entries in the escrow database into “bins”
corresponding to tag values. Because a pseudorandom function assigns outputs to
inputs deterministically, escrows corresponding to the same 〈user,type〉 category
are always placed in the same bin, enabling efficient identification of the escrowed
entries of a given category during the subpoena. However, the pseudorandomness
helps to ensure that the tags reveal no more information than permitted by
category-preserving anonymity, i.e., the only information learned by the escrow
agent about any two escrows is whether they belong to the same category.

The signature is included to disable Agent’s tampering with the escrowed
entries. The encryption and the tag must preserve secrecy of the transaction
plaintext against chosen-plaintext attack, because a malicious Agent can cause
a user to participate in transactions of Agent’s choice and see the corresponding
escrow entries (see the definition of category-preserving anonymity). The whole
escrow must also protect user’s key privacy against the same chosen-plaintext
attack. To enable verification that an escrow is correctly formed, both the tag, the
ciphertext, and the signature must be verifiable by the transaction counterparty,
i.e., given the transaction plaintext and the user’s public key.

Initialization: Every user is initialized with a public/private key pair imple-
mented as in section 3.2. The escrow agent is initialized with a key pair of any
CMA-secure signature scheme.

Escrow protocol: We assume that before the escrow protocol starts, the user
and the counterparty agree on transaction description m of type T = Type(m).
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1. The user sends to the escrow agent an escrow e = (c, t, s) s.t.:
(a) c = Enck{m} is a verifiable anonymous symmetric encryption of m.
(b) t = Tagk{T } is an output of a verifiable anonymous tagging function.
(c) s = sigk{c, t} is an anonymous signature on the (ciphertext,tag) pair.

2. The agent places escrow e in the escrow database in the bin indexed by the
tag t, and sends his signature rcpt on e to the user.

Verification protocol:
1. The user forwards the escrow e and the agent’s signature rcpt to the coun-

terparty, together with a proof that:
(a) c is a ciphertext of m under a key k corresponding to the public key pk.
(b) t is a tag computed on type T under key k corresponding to pk.
(c) s is an anonymous signature computed on (c, t) under the public key pk.

2. The transaction counterparty accepts if he verifies the agent’s signature on
e and the correctness of the above three proofs.

Subpoena protocol: The protocol proceeds on a public input of any subset
D of the escrow database, the type T of the subpoenaed transactions, and the
identity pk of the subpoenaed user:

1. The user computes tag t = Tagk{T } and proves its correctness under pk.
2. Entries (e1, e2, ...) in D which are indexed by tag t are publicly identified,

and for each ei = (ci, t, si), the user verifies the signature si on (ci, t).
(a) If the signature does not match, the user provably denies that the sig-

nature is valid under pk, and if the proof is correct the entry is skipped.

(b) If the signature matches, the user publishes the transaction plaintext mi

by decrypting the ciphertext ci under k, and proving correctness of the
decryption under key k corresponding to pk.

3. If the user cooperates, the output includes all (and only) transactions of the
subpoenaed type for that user. If any of the above proofs fails, the public
output is the special symbol contempt.

From the properties of the cryptographic primitives used in this VTE con-
struction, the following theorem follows:

Theorem 1. The basic VTE scheme satisfies (1) verifiability, (2) efficient and
unavoidable subpoena, and (3) tamper resistance.

3.1 Privacy Leakage of the Basic VTE Scheme

In the above scheme, the user presents the (ciphertext, tag, signature) tuple to
both the agent and the counterparty. This allows a malicious counterparty and
a malicious agent to link their views of the escrow and verification protocols,
and since the counterparty knows the user identity and the message plaintext, a
malicious agent can learn an association between a tag and a 〈user,type〉 pair.
This would violate category-preserving anonymity, because with this knowledge
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the escrow agent can learn the type and user identity of all transactions with
the same tag, even those conducted with other, honest counterparties.

In practice, privacy protection can be increased by allowing the type of the
transaction to range over some small set, for example of a hundred constants.
If the index of the constant used for a given transaction is chosen by hash-
ing the counterparty’s identity, then there is only 1% chance that a dishonest
counterparty can endanger the anonymity of transactions of the same type with
any other honest counterparty. On the other hand, when a user is subpoenaed
on a given type, he has to identify a hundred categories instead of one. Such
privacy/efficiency trade-off may be acceptable in some applications.

3.2 Definitions and Constructions for Cryptographic Primitives

Let p, q be large primes s.t. p = 2q +1, and let g be a generator of Z
∗
p. The secu-

rity of our constructions relies on the hardness of the Decisional Diffie-Hellman
(DDH) problem in subgroup QRp of quadratic residues in Z

∗
p, which says that

tuples (h, ha, hb, hab) are indistinguishable from tuples (h, ha, hb, hc) for h ∈ QRp

and random a, b, c in Zq (see, e.g., [Bon98]). Our security arguments follow the
so-called “Random Oracle Model” methodology of [BR93]. Namely, we assume
an “ideal hash function” H : {0, 1}∗ → Z

∗
p which can be treated as a random

function in the context of our constructions.

Verifiable random functions. A VRF family [MRV99] is defined by three
algorithms: a key generation algorithm KGen outputing private key k and public
key pk, an evaluation algorithm Eval(k, x) = (y, π) which on input x outputs the
value of the function y = fk(x) and a proof π that the value is computed cor-
rectly, and a verification algorithm Ver which can verify π on inputs (pk, x, y, π).
The VRF is secure if it is infeasible to distinguish an interaction with function
fk, for a randomly chosen key k, from an interaction with a purely random func-
tion which outputs uniformly distributed values in the same range. Moreover,
the VRF needs to be verifiable, in the sense that any proof will be rejected un-
less the returned value y is indeed fk(x). The VRF concept and constructions
were originally proposed for the standard model [MRV99, Lys02, Dod03], i.e.,
without assuming ideal hash functions, but evaluation/verification cost for these
constructions involves Ω(τ) cryptographic operations. In contrast, in the Ran-
dom Oracle Model, a simple VRF family can be constructed based on the DDH
assumption, with evaluation and verification cost of 1-3 exponentiations. Simi-
lar or identical constructions were used before [CP92, NPR99, CKS00], without
explicitly noting that the result is a VRF family.

We relax (slightly) the standard definition of VRF [MRV99] by replacing the
uniqueness requirement with a computational soundness requirement.

Definition 1. A VRF family (for a group family {Gi}i=1,2,...) is given by a
tuple of polynomial-time algorithms (KGen, Eval, Ver) where KGen(1τ ) outputs a
pair of keys (k, pk), Eval is a deterministic algorithm which, on any x, outputs
(y, π)← Eval(k, x) s.t. y ∈ Gn, and Ver(pk, x, y, π) outputs 0 or 1, which satisfy
the following requirements:
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1. Completeness: For every τ and x, if (k, pk) ← KGen(1τ ) and (y, π) =
Eval(k, x) then Ver(pk, x, y, π) = 1.

2. Soundness: For any probabilistic polynomial-time algorithm A, for any values
pk and x, the following probability is negligible:

Pr[Ver(pk, x, y, π) = Ver(pk, x, y′, π′) = 1 ∧ y �= y′ | (y, y′, π, π′)← A(pk, x)]

3. Pseudorandomness: For all probabilistic polynomial-time algorithms A1, A2,

Pr[ b = b′ | (k, pk)← KGen(1τ ); (x, st)← A
OEval(k,·)
1 (pk); y0 ← Eval(k, x);

y1 ← Gn; b← {0, 1}; b′← A
OEval(k,·)
2 (st, yb) ] ≤ 1

2
+ negl(τ)

where A1 and A2 are restricted from querying oracle OEval(k, ·) on the chal-
lenge input x chosen by A1.

Construction: Let H : {0, 1}∗ → Z
∗
p be an ideal hash function (modeled as

a random oracle). Formally, the key generation picks a triple (p, q, g) as above
s.t. the hardness of the DDH problem in QRp is good enough for the security
parameter. For ease of discussion, we treat (p, q, g) as chosen once and for all.
We will construct a V RF function family indexed by such triples, whose range
is the group of quadratic residues QRp. The key generation algorithm picks a
secret key k ∈ Z

∗
q and the public key pk = g2k mod p. The evaluation algorithm

Eval(k, x) returns y = h2k mod p where h = H(x), and a non-interactive zero-
knowledge proof π of equality of discrete logarithm x = DLh(y) = DLg(pk).
This is a standard ZKPK proof of discrete-log equality which can be made non-
interactive in the ROM model, e.g., [CS97].

Theorem 2. Algorithms (KGen, Eval, Ver) define a Verifiable Random Function
family, under the DDH assumption in the Random Oracle Model.

Verifiable anonymous tagging function. We define a verifiable anonymous
tagging function simply as a VRF, and we implement it as Tagk{x} = fk(x).
It is easy to see that tags Tagk{T } give no information about the category
they represent, i.e., user’s identity pk and the transaction type T , except that,
whatever category this is, it is identified with tag Tagk{T }. It is also easy to see
that a VRF has good enough collision-resistance so that escrows of two categories
go to different bins. In fact, a much stronger property holds:

Theorem 3. Under the discrete log assumption, in the Random Oracle Model,
the VRF family (KGen, Eval, Ver) has a strong collision resistance property in the
sense that it is infeasible to find pair (k, x) �= (k′, x′) s.t. Eval(k, x) = Eval(k′, x′).

Verifiable anonymous symmetric encryption. For escrows to be anony-
mous, the symmetric encryption Enc used by the user must be not only chosen-
plaintext secure, but also key-hiding. Following [Fis99, BBDP01], we combine
these in one definition that implies several natural anonymity properties. Even
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an adversary who decides who encrypts what, cannot tell, for ciphertexts cre-
ated outside of his control, whether the messages and keys satisfy any non-trivial
relation this adversary is interested in. For example, the adversary cannot tell if
a ciphertext is an encryption under any given key, if two ciphertexts are encryp-
tions under the same key, if two ciphertexts encrypt related messages, etc.

Let (KGen, Enc, Dec) be a symmetric encryption scheme. In our experiment,
first the key generation algorithm is executed p(τ) times where p(·) is some
polynomial and τ is the security parameter. Denote the keys as ki, for i ∈
{1, p(τ)}. Adversary can query the following flexible encryption oracle OEnc(·, ·):
on input (i, m), i ∈ {1, p(τ)} and m ∈ {0, 1}∗, OEnc(i, m) outputs Enc(ki, m).

Definition 2. We say that a symmetric encryption scheme (KGen, Enc, Dec) is
(chosen-plaintext-secure) anonymous if, for any polynomial p(·) and probabilistic
polynomial-time adversary A1, A2,

Pr[ b = b′ | (k1, ..., kp(τ))← (KGen(1τ ))p(τ); (i0, i1, m0, m1, st)← A
OEnc(·,·)
1 (1τ );

b← {0, 1}; c← Enc(kb, mb); b′ ← A
OEnc(·,·)
2 (st, c)] ≤ 1

2
+ negl(τ)

We also extend the notion of (CPA-secure and anonymous) symmetric en-
cryption by a verifiability property. We stress that this property is different
from what is referred to as verifiable encryption in the context of asymmetric
encryption schemes [ASW98, CD00]. We require that the secret key k of an
anonymous encryption be generated together with a commitment to this secret
key, which we will call a public key pk. This public key, however, is used not to
encrypt but to enable efficient verification that a given ciphertext is a correct
encryption of a given plaintext. In fact, our verifiability property for symmetric
encryption is very similar to the verifiability property of VRFs. Namely, we re-
quire that the encryption procedure Enc is augmented so that along with output
c = Enck{m} it produces a proof π of correct encryption evaluation. We also
require an efficient procedure Ver which takes as inputs message m, ciphertext c,
and a proof π. The algorithms (KGen, Enc, Dec, Ver) must then satisfy an obvious
completeness property, i.e., that a correctly computed proof always verifies, and
a soundness property, which says that it is intractable, for any (k, pk), to find a
tuple (m, m′, c, π, π′) s.t. m �= m′ but Ver(pk, m, c, π) = Ver(pk, m′, c, π′) = 1.
Construction: Instead of using our VRF family to encrypt directly, we replace
the hash function in our VRF construction with a Feistel-like padding scheme
padH(m|r) similar to the OAEP padding [BR94, Sho01]. Assume message length
is |m| = τ1 = |p|−2τ−2 where τ is the security parameter. We define our padding
scheme as padH(m|r) = (h1|h2) for h1 = H1(r)⊕ m and h2 = H2(h1)⊕ r, where
hash functions H1, H2 output bit strings of length τ1 and 2τ , respectively, and r
is a random string of length 2τ . Note that (m|r) can be recovered from (h1|h2).
This padding is simpler than the OAEP padding and its variants because our
(symmetric, anonymous) encryption needs only chosen plaintext security rather
than chosen ciphertext security.

Using such padding we can encrypt as follows. KGen is the same as in the VRF
scheme. Enck(m) = o2k mod p where o = padH(m|r) is treated as an element in
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Z
∗
p. The decryption Deck(c) computes candidates o′ and −o′ mod p for o, where

o′ = ck′
mod p, and k′ = α ∗ k−1 mod q where α = (q + 1)/2 (in integers). To

decrypt we take as o either o′ or −o′ mod p, depending on which one is smaller
than 2|p|−2. We then recover m|r by inverting the padding scheme padH on o.
The proof of correct encryption consists of the randomness r and a proof π of
discrete-log equality DLo(c) = DLg(pk).

Theorem 4. The above scheme is a verifiable anonymous symmetric encryption
scheme secure under the DDH assumption in ROM.

Anonymous signatures. An anonymous signature is an undeniable signature
scheme [CP92] with an additional property of key-privacy. Recall that an un-
deniable signature scheme requires that the recipient of a signature s produced
under public key pk on message m cannot prove to a third party that this is
a valid signature under pk. Instead, the third party must ask U to verify the
signature validity or invalidity via an interactive proof protocol. Here we addi-
tionally require key privacy in the sense corresponding to the CPA-security of
the anonymous symmetric encryption, i.e., that it is infeasible to tell from a
(message,signature) pair what public key was used in computing it.
Construction: Any VRF family immediately yields an anonymous signature
scheme. In fact, the undeniable signature construction of [CP92] already has
the required properties, because it is implicitly constructed from the same VRF
construction as here. For better concrete security, we slightly modify the [CP92]
construction. The signature on m is a pair s = (r, s̃) where r is a random string
of length 2τ , and s̃ = fk(m|r) = H(m|r)2k mod p. The proof of (in)correctness
of a signature under public key pk is a zero-knowledge proof of (in)equality of
discrete logarithm (e.g., [CS03]) between tuples (g, pk) and (H(m|r), s̃).

3.3 Key Management for Discrete-Log Based VTE Schemes

The discrete-log based keys used in our scheme can be efficiently secret-shared
by the user with the CA trustees using Feldman’s verifiable secret sharing (see,
e.g., [GJKR99] for an exposition). Using recent techniques of [CS03], the user can
deliver a secret-share to each trustee encrypted under the trustee’s public key,
and the trustee can verify the share’s correctness without the use of the trustee’s
private key. The resulting shares can then be efficiently used by the trustees in the
subpoena process. For example, if the user refuses to cooperate, the CA trustees
can efficiently compute the tag t = (H(Type))2k mod p for the subpoenaed user
and type via threshold exponentiation protocol such as [GJKR99]. The trustees
can also use the same protocol to verify signatures on and decrypt the escrows.

4 VTE Scheme with Unlinkable Receipts

As explained in section 3.1, category-preserving anonymity is hard to achieve un-
less the escrow agent and the transaction counterparty are somehow prevented
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from linking their views of the escrow and the verification protocols. We show
how to achieve such separation of agent’s and counterparty’s views by replacing
the standard signature scheme used by our basic VTE scheme with the CL sig-
nature scheme of [CL01, CL02], which enables the user to prove his possession of
the agent’s receipt to the counterparty in zero-knowledge. To integrate CL signa-
tures into our VTE scheme, in section 4.1 we introduce a novel zero-knowledge
proof of knowledge of committed key and plaintext (CKP-ZKPK).

Diophantine commitments. To use the CL signature scheme, we need a com-
mitment scheme of [FO98, DF01] which allows a commitment to integers rather
than to elements in a finite field. Consider a special RSA modulus n = p′q′,
where p′, q′, (p′ − 1)/2, (q′ − 1)/2 are all prime and |p′|, |q′| are polynomial in
the security parameter τ . Consider also a random element b of group QRn of
quadratic residues modulo n, and a random element a of the subgroup generated
by b in Z

∗
n. The commitment to an integer value m is C = ambm′

mod n where
m′ is chosen uniformly in Zn. This commitment scheme is statistically hiding,
and it is binding if strong RSA assumption holds for n [FO98, DF01].

CL signatures. The public key in CL signature consists of a special RSA mod-
ulus n as above, and three uniformly chosen elements a, b, d in QRn. Let lm be
a parameter upper-bounding the length of messages that need to be signed.
The public key is (n, a, b, d). The signature on m is a triple (v, e, s) where
ve = ambsd mod n and 2le > e > 2le+1 where le ≥ lm + 2. This signature
scheme is CMA-secure under the strong RSA assumption [CL02].

The CL signature comes with two protocols: (1) the CL signing protocol,
in which the signer can issue signature (v, e, s) on m ∈ {0, 1}lm given only a
commitment Cm to m; and (2) the CL verification protocol which is a zero-
knowledge proof in which the prover can prove the knowledge of a signature on
m to the verifier who knows only a commitment to m.

The commitments to m used in protocols (1) and (2) can be independent
of the CL signature public key. However, for simplicity, in our application the
instance of the Diophantine commitment scheme used in the CL signing protocol
will be formed by values (n, a, b) which are parts of the CL signature public key.

Before we show how to use them, we need to make two modifications to the
CL signatures as shown above. First, we use the [CL02] extension of the above
scheme to signing a block of three messages (m1, m2, m3). This is done simply
by including three random elements a1, a2, a3 in QRn instead of one a in the
public key of the CL signature scheme. The signature is a triple (v, e, s) where
ve = am1

1 am2
2 am3

3 bsd mod n. In the CL signing and verification protocols adapted
to a block of three messages, both the signer and the verifier know three separate
commitments on these messages.

Second, we note that if in the CL signature verification protocol the verifier
knows the message m itself instead of a commitment to it, the protocol still works
and even gets easier. Similarly, if the verifier knows not the above Diophantine
commitment to m, but gm mod p (also a commitment to m), the protocol still
works, but the prover only shows knowledge of a signature on some integer m′ s.t.
m′ = m mod 2q (recall that p = 2q+1, p, q are primes, and g is a generator of Z

∗
p).
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The same holds for the CL verification protocol extended to a block of messages
(m1, m2, m3). In our case, the verifier will know messages m1 and m2, and a
commitment gm3 mod p to message m3, and the prover will show possession of
CL signature on block of messages (m1, m2, m

′
3) s.t. m′

3 = m3 mod q.

VTE scheme with unlinkable receipts. We recall the VTE construction of
section 3, where k is the user’s secret key, pk = g2k mod p is the public key,
and m is the transaction plaintext. The escrow is a triple e = (c, t, s) where c =
o2k mod p, t = h2k mod p, s = (r, s̃), s̃ = H((c, t)|r)2k mod p, h = H(Type(m)),
o = padH(m|r′), and r, r′ are random strings of length 2τ .

Let lm, the maximum message length, be |p|, enough to represent elements in
either Z

∗
p or Z

∗
q . The public key of the escrow agent is the public key (n, a, b, c) of

the CL signature scheme, except that a is chosen at random from the subgroup
generated by b in Z

∗
n. If the escrow agent generates his key himself, he must

prove knowledge of i s.t. a = bi mod n.
The user sends e = (c, t, s) = (c, t, (r, s̃)) to the escrow agent as in the

basic VTE scheme, but here he also includes three diophantine commitments
Co, Ch, Ck on integer values o, h, k using (n, a, b) as the instance of the commit-
ment scheme. Using the zero-knowledge proof CKP-ZKPK of committed key and
plaintext (see section 4.1), the user then proves his knowledge of integer values
(o′, h′, k′) s.t. o′, h′, k′ are committed to in Co, Ch, Ck, and c = (o′)2k′

mod p,
t = (h′)2k′

mod p, and s̃ = H((c, t)|r)2k′
mod p. If the proof succeeds, the user

and the escrow agent run the CL signing protocol on the commitments Co, Ch, Ck

at the end of which the user holds a CL signature on the block (o′, h′, k′) of the
committed messages.

In the verification phase, the user sends to the transaction counterparty
values (o, r′), together with the transaction plaintext m and his public key
pk = g2k mod p. The counterparty computes h = H(Type(m)) and verifies if
o = padH(m|r′). The user and the counterparty then run the CL verification
protocol in which the user proves possession of a CL signature on integer values
o, h, k′ where the verifier knows o and h and pk = g2k′

mod p.
If the user passes both proofs, the first with the escrow agent as the verifier

and the second with the transaction counterparty as the verifier, then under the
strong RSA assumption needed for the diophantine commitment to be binding,
o′ = o, h′ = h, and k′ = k mod q, thus the escrow entry e = (c, t, s) is com-
puted correctly. Furthermore, the escrow agent learns only the (ciphertext,tag)
pair (c, t) = (o2k mod p, h2k mod p) and the signature s, while the counterparty
learns only the values o, h associated with the plaintext m and the public key
pk = g2k mod p.

From the properties of the basic VTE scheme and the CKP-ZKPK proof
system (see section 4.1), the following theorem follows:

Theorem 5. The VTE scheme with unlinkable receipts satisfies (1) verifiability,
(2) efficient and unavoidable subpoena, (3) tamper resistance, and (4) category-
preserving anonymity, under the DDH and strong RSA assumptions in ROM.
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4.1 Zero-Knowledge Proof of Committed Key and Plaintext

We present the ZK proof protocol required by the unlinkable-receipt VTE con-
struction of the previous section. Recall that the user needs to prove in zero-
knowledge to the escrow agent his knowledge of integer values o, h, k s.t. o, h, k
are committed to in Co, Ch, Ck, and c = o2k mod p, t = h2k mod p, and s̃ =
H((c, t)|r)2k mod p. The public inputs in this proof are values (p, q, g), (n, a, b),
(Co, Ch, Ck), and (c, t, r, s̃). The prover’s inputs are o, h ∈ Z

∗
p, k ∈ Z

∗
q , and the

decommitment values o′, h′, k′ in Zn.

ZKPK of Committed Key and Plaintext

Prover’s Input: k ∈ Z
∗
q , the secret key

o ∈ Z
∗
p, the “plaintext”

o′, k′ ∈ Zn, the decommitment values
Common Input: (p, q, g), the discrete-log group setting

(n, a, b), the instance of a diophantine commitment scheme

Ck = akbk′
mod n, commitment to k

Co = aobo′
mod n, commitment to o

c = o2k mod p, the ciphertext

1. Prover P picks õ ← Z
∗
p and õ′ ← Zn, and sends Cõ = aõbõ′

mod n, and
c̃ = (õ)2k mod p to the Verifier V

2. Verifier V sends to P a random binary challenge b = 0 or 1
3. P responds as follows:
b = 0: (a) P sends (s, s′) = (õ, õ′) to V

(b) P performs a standard ZKPK proof of knowledge (e.g., [CM99])

of (k, k′) s.t. akbk′
= Ck mod n and s2k = c̃ mod p

b = 1: (a) P sends s = o ∗ õ mod p to V
(b) P performs a standard ZKPK proof of knowledge (e.g., [CM99])

of (k, k′) s.t. akbk′
= Ck mod n and s2k = c ∗ c̃ mod p

(c) P performs a ZKPK given by [CM99], of knowledge of values

(o, o′, õ, õ′) s.t. aobo′
= Co mod n, aõbõ′

= Cõ mod n, and o ∗ õ =
s mod p

4. In both cases V accepts only if the appropriate ZKPK proofs verify. Addi-
tionally, if b = 0, V checks also if asbs′ = Cõ mod n.

Fig. 1. Binary challenge proof system CKP-ZKPK

To simplify the presentation, we will show a ZKPK system for a slightly sim-
pler problem, namely the ZK proof of knowledge of committed key and plaintext
(CKP-ZKPK). Namely, the public values are (p, q, g), (n, a, b), (Co, Ck, c) and the
prover proves knowledge of integer values o, k s.t. (1) they are committed to in
Co, Ck under commitment instance (n, a, b), and (2) c = o2k mod p. One can
see that the required ZKPK system is created by running three proofs in paral-
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lel: (i) one CKP-ZKPK proof for secrets o, k and public (Co, Ck, c), (ii) another
CKP-ZKPK proof for secrets h, k and public (Ch, Ck, t), and (iii) a standard
ZKPK proof of knowledge (e.g. [CM99]) of k s.t. H((c, t)|r)2k = s̃ mod p and k
is committed to in Ck, where the public inputs are (Ck, c, t, r, s̃).

We present the CKP-ZKPK proof protocol in Figure 1. We note that this is a
binary challenge protocol with 1/2 soundness error, so to get security parameter
τ this proof should be repeated τ times, or in the Random Oracle Model it can
be made non-interactive by preparing the τ instances of it in independently in
parallel, except that the challenge bits are computed by hashing together the
first prover’s messages of all these τ instances. The resulting protocol involves
O(τ) exponentiations for both the prover and the verifier, which unfortunately
makes this protocol quite expensive in practice.

Note that both ZKPK proofs referred to in the CKP-ZKPK protocol can
be non-interactive in the Random Oracle Model considered here, and that they
involve a small constant amount of exponentiations. We remark that the protocol
proof system of [CM99] used in step (c) of case b = 1 for proving modular
multiplication on committed values, can be simplified in our case, because here
the multiplicative factor s = o ∗ õ and the modulus p are publicly known, in
contrast to the general case considered by [CM99], where the verifier knows s
and p only in a committed form.

Theorem 6. CKP-ZKPK proof system is computational zero-knowledge if the
DDH problem for group QRp is hard.

Theorem 7. CKP-ZKPK proof system is a proof of knowledge with soundness
error 1/2 if the strong RSA problem in group Zn is hard.

5 VTE Scheme with Automatic Threshold Disclosure

We describe an extension of the VTE scheme which enables the escrow agent to
automatically open escrows that (1) fall into the same bin, i.e., share the same
〈user,type〉 category, and (2) their number is no less than some fixed thresh-
old, pre-specified for transactions of this type. This can be used, for example,
to implement oversight of financial transactions which the following disclosure
condition: if some user requests more than 10 transfers, via any set of banks, to
some pre-specified “offshore haven,” the plaintexts of the corresponding escrows
must be automatically disclosed to the overseeing authority.

Using Feldman’s non-interactive verifiable secret sharing scheme [Fel87], we
modify the VTE scheme of section 3 as follows. To create an escrow of plaintext
m under key k, the user computes the tag t = Tagk{T } where T = Type(m)
as in section 3, but the ciphertext is computed differently. Let d be the publicly
pre-specified threshold disclosure value that corresponds to this T . The user
picks a unique d-degree secret-sharing polynomial f(·) by applying d + 1 times
a pseudorandom function indexed by the secret k, i.e., ki = H(k, T, i) for i =
0, . . . , d, where H : {0, 1}∗ → Zq, and setting f(x) = k0 + k1x + . . . kdx

d mod q.
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A set of values {C0, . . . , Cd} where Ci = g2ki mod p serves as public verifi-
cation information for this secret-sharing polynomial, The ciphertext is now
c′ = (c, {Ci}i=0..d, x, f(x), d), where c = Enck0{m}, π is the proof that c is a cor-
rect encryption of m under the “quasi-one-time” private key k0 (and its public
counterpart C0 = g2k0 mod p), and x is some unique value corresponding to this
transaction, e.g., x = H(c). The user computes the private signature s = (r, s̃)
on (c′, t), and hands the escrow e = (c′, t, s) to the escrow agent.

The escrow agent checks that (x, f(x)) is a true data point on the polynomial
committed to in set {Ci}i=0..d by verifying that g2f(x) = (C0) ∗ (C1)x ∗ . . . ∗
(Cd)xd

mod p. Moreover, if the bin tagged with tag t in the escrow database has
other entries, the agent checks that the argument x has not been used before
with the tag t, and the values {C0, . . . , Cd} are the same for this t as before. The
agent then releases his signature on the escrow e to the user. The user presents
it to the counterparty, who verifies it as before, except that correctness of the
ciphertext c = Enck0{m} is verified on (C0, m, c, π) instead of (pk, m, c, π), and
it is checked that d is the threshold value corresponding to type T .

To prevent the counterparty and the escrow agent from linking their views,
the same mechanism as in section 4 may be deployed. The user sends com-
mitments Co, Ch, Ck on values o, h, k to the escrow agent (note the difference
between Co and C0), proving his knowledge of o, h, k, k0 s.t. c = o2k0 mod p,
C0 = g2k0 mod p, t = h2k mod p, and s̃ = H((c′, t)|r)2k mod p. The same zero-
knowledge protocol as in section 4 may be used, and is even slightly simpler
since C0 is a simpler commitment to k0 than the Diophantine commitment. Af-
ter checking the proofs, the user and the escrow agent perform the CL signing
protocol to give the user a CL signature on the block of messages (o, h, k, d).
The user then sends to the counterparty values (o, r′) as in section 4, together
with d. The counterparty checks that o is properly formed and d is the proper
threshold value for the given transaction type, and they run the CL verification
protocol to prove the user’s knowledge of a CL signature on values (o, h, k, d)
where the verifier knows o, h, d and pk = g2k mod p.
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