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Abstract Generating a distributed key, where a constant fraction of the
players can reconstruct the key, is an essential component of many large-
scale distributed computing tasks such as fully peer-to-peer computation
and voting schemes. Previous solutions relied on a dedicated broadcast
channel and had at least quadratic cost per player to handle a constant
fraction of adversaries, which is not practical for extremely large sets
of participants. We present a new distributed key generation algorithm,
sparse matrix DKG, for discrete-log based cryptosystems that requires
only polylogarithmic communication and computation per player and no
global broadcast. This algorithm has nearly the same optimal threshold
as previous ones, allowing up to a 1

2
− ε fraction of adversaries, but is

probabilistic and has an arbitrarily small failure probability. In addition,
this algorithm admits a rigorous proof of security. We also introduce
the notion of matrix evaluated DKG, which encompasses both the new
sparse matrix algorithm and the familiar polynomial based ones.

Keywords: Threshold Cryptography. Distributed Key Generation. Dis-
crete Logarithm. Random Walk. Linear Algebra.

1 Introduction

Distributed key generation (DKG) is an essential component of fully-distributed
threshold cryptosystems. In many contexts, it is impractical or impossible to
assume that a trusted third party is present to generate and distribute key shares
to users in the system. In essence, DKG allows a set of players to collectively
generate a public/private key pair with the “shares” of the private key spread
over the players so that any sufficiently large subset can reveal or use the key. The
generated key pair is then used in a discrete-log based threshold cryptosystem.
Commonly the security parameter of such a system is called the threshold, t.
This is the number of players that can be corrupted without the key being
compromised.

Most distributed key generation schemes in the literature do not carefully
consider the communication and computation cost required of each server. Specif-
ically, most schemes require O(nt) computation and communication per player,
where n is the number of players participating in the scheme. In this paper,
we present a randomized algorithm called sparse matrix DKG that reduces this



cost to O(log3 n) per player, both in terms of computation and communication,
in the presence of Ω(n) malicious parties. For large systems, this difference is
quite significant. The cost of this gain is a slight chance that the algorithm fails.
We formalize this cost in the definition of a probabilistic threshold distributed
key generation algorithm. We also show how sparse matrix DKG is a specific
instance of a more broad family of DKG algorithms.

2 Basic System Model

The systems we describe involve a group of n players. The players are modeled
by probabilistic polynomial-time Turing machines. They are connected with se-
cure point-to-point channels, but without any broadcast channel. We feel that
these assumptions are realistic for practical situations: true broadcast is only
achievable in practice using Byzantine agreement but secure channels can be
achieved through a public key infrastructure. We also assume that the players
have access to a common source of randomness. The adversaries in this system
are static and are assumed to be fixed when the algorithm begins. This is a
reasonable assumption since, in practice, this algorithm is sufficiently fast that
successful dynamic adversaries are unlikely.

For simplicity, we assume that there is an honest, but not trusted, dealer
present to aid in the initialization of the algorithm. The first task of the dealer is
to establish the set of n players that will participate in the algorithm. This task
makes the dealer resemble a directory server for the players. The users who wish
to generate a distributed key are assumed to know the identity of the dealer.
These users will then contact the dealer in order to secure a unique identifier
for the algorithm. This dealer may also assist in the creation of a public key
infrastructure so that users can transmit messages securely through encryption
or authenticate messages with digital signatures. The dealer then decides when
enough users are present for the algorithm to begin. This is decided by either
having a fixed number of users known up front or requiring that users who wish
to participate send a message to the dealer within a fixed time limit. In either
case, this process determines the value of n, the number of users participating
in the algorithm. Part of our initial assumption is that the dealer has access to a
random oracle [1] so some randomness may be distributed to the players. Based
on the value of n, the dealer will decide on a set of random bits and distribute
a subset of them to each player.

In practice, the dealer need not be a single party, and could be implemented
through a logarithmic size group of users or a hierarchy of users.

3 Distributed Key Generation Protocols

3.1 Previous Work

Existing literature on DKG algorithms is quite broad. One main line of approach
began with the polynomial-based algorithm presented by Pedersen [8]. This al-
gorithm was presented by other authors in varied forms as the basis of various



threshold cryptosystems. This basic algorithm and these modifications, however,
were vulnerable to a variety of attacks that would allow an adversary to bias the
distribution of the private and public keys. This flaw was remedied by Gennaro,
et al. [4] in a protocol that operates in two phases and uses Pedersen’s verifi-
able secret sharing algorithm [9] to protect the bit commitments of the public
key against static adversaries. All of these approaches require O(t) broadcasts
and O(n) point-to-point messages for each player. Gennaro, et al. followed up
their paper [5] with an explanation of how Pedersen’s original algorithm is se-
cure when used for Schnorr signatures. One main advantage for using the basic
Pedersen algorithm is saving one broadcast round.

3.2 Definitions

The following definitions apply to discrete-log based cryptosystems. The globally
known constants are p, a large prime; q, a large prime that divides p−1 and g an
element of order q in Zp. The first three criteria of the following definition have
been used widely to define DKG protocols. The fourth was added by Gennaro,
et al. in order to quantify the secrecy of an algorithm’s key against malicious
participants in the generation phase.

Definition 1. A t-secure distributed key generation algorithm satisfies the fol-
lowing requirements, assuming that fewer than t players are controlled by the
adversary:

(C1) All subsets of t + 1 shares provided by honest players define the same
unique secret key x.

(C2) All honest parties have the same value of the public key y = gx mod p,
where x is the unique secret guaranteed by (C1).

(C3) x is uniformly distributed in Zq (and hence y is uniformly distributed
in the subgroup generated by g).

(S1) The adversary can learn no information about x except for what is im-
plied by the value y = gx mod p.

We propose the following modification to allow a DKG algorithm to fail
with small probability. This will allow for algorithms that are considerably more
efficient with arbitrarily small impacts to security.

Definition 2. A probabilistic threshold (α, β, δ) distributed key generation algo-
rithm satisfies requirements (C2), (C3) and (S1) above as well as (C1’), (C4’)
below (which replace (C1)), all with probability 1 − δ, assuming that the set of
players controlled by the adversary is less than αn.

(C1’) The shares of any subset of honest players define the same key, x, or
no key at all.

(C4’) Any subset of at least βn honest players can recover the key with prob-
ability 1− δ.

By these definitions, a t-secure DKG algorithm is a probabilistic threshold
(

t
n
, t+1

n
, 0

)

DKG algorithm as well.



3.3 Matrix Evaluated DKG

The sparse matrix distributed key generation algorithm we propose for very large
sets of players is a specific instance in a family of protocols which we call matrix
evaluated DKG. In section 3.4 we show that this family includes the familiar
DKG algorithm introduced by Gennaro, et al. This general technique consists
of three primary phases. In the first phase, all the players create their secrets
and share them with the others. After it is decided which players have correctly
shared their secrets, the public key is recovered. Finally, after the generation is
complete, the algorithm provides a method for recovering the secret with only
a subset of the shareholders. The use of a matrix to codify the relation between
the key and its shares is similar to the technique Blakley proposed for secret
sharing [2].

Master Algorithm

1. Start with a dealing phase so that all players know E, v, g, h, p, q where p is
a large prime, q is a large prime that divides p − 1, g and h are elements of
order q in Zp, E is an m × n matrix over Zq and v is an m element vector
over Zq.

2. Generate x:
(a) Each player i chooses two row vectors, ai, a

′
i ∈ Zm

q .

(b) Player i then calculates si , aiE, s′i , a′
iE. Define the checking group:

Qi = {j|sij 6= 0∨s′ij 6= 0}. Player i sends the jth element of each, sij , s
′
ij

to player j ∈ Qi and broadcasts1 Ci , gaiha′

i mod p (where both the
exponentiation and multiplication are element-wise) to all j ∈ Qi.

(c) Each player j verifies the shares received from other players. For each i
such that j ∈ Qi, player j checks if:

gsij hs′

ij =

m
∏

k=1

(Cik)Ekj mod p (1)

If this check fails for i, player j broadcasts a complaint against player i
to Qi.

(d) Every player i who was complained against by player j will broadcast
sij , s

′
ij to Qi.

(e) The other players in Qi will check the broadcast sij , s
′
ij and mark as

invalid each i for which Eq. 1 does not hold.
3. Each player i builds the set V of all players who were not marked invalid and

sets their share of the secret as xi ,
∑

j∈V sji. Note that xi is the ith element

of the vector
(

∑

j∈V aj

)

E. The secret key is defined as x ,
(
∑

i∈V ai

)

v.

4. Reveal y = gx mod p
(a) Each valid player i ∈ V broadcasts the vector Ai , gai mod p to Qi.

1 All the following broadcasts are to Qi only. In the sparse matrix algorithm,
|Qi| = O(log n).



(b) Each player j verifies that each Ai is valid by checking for each i ∈ V
such that j ∈ Qi if:

gsij =

m
∏

k=0

(Aik)Ekj mod p (2)

If this check fails for i, player j broadcasts a complaint against player i
as well as sij , s

′
ij to Qi.

(c) If at least one valid complaint is filed against player i (Eq. 1 holds for
sij , s

′
ij but Eq. 2 does not), then all players in Qi will reconstruct ai in

public by solving a set of linear equations (si = aiE), for the valid values
of si.

(d) Each of the honest members of Qi knows both whether player i is valid
and, if so, the correct value Ai. To find y, it suffices to ask each member
of each Qi, find the set V , and then take y ,

∏

i∈V

∏

j A
vj

ij .

Sharing the secret The basis of this algorithm is what we call an evaluation
matrix E, which has m rows and n columns, where n is the total number of
players in the system. Each player i picks an internal secret ai, which is a row
vector with m elements and, from that, creates an external secret si , aiE
mod q, another row vector, now with n elements. Player i then reveals the jth
column of the external secret sij to player j. If the ai and E are structured, it
is possible that fewer than n users are assigned non-zero shares by player i.

In order to demonstrate that player i is creating consistent shares of the
external secret, she must broadcast a committed version of her internal secret.
For this we employ the VSS scheme introduced by Pedersen [9]. Player i creates
another, random internal secret a′

i and broadcasts a commitment vector Ci =

gaiha′

i mod p (the multiplication here is element-wise) to the checking group Qi

of players who receive the non-trivial shares. Each member of Qi can then verify
that her share of si was created from the same ai as the others. This is achieved
by each player j checking that Eq. 1 holds for each i, since all honest players are
assumed to agree on Ci

This equality will certainly hold if sij =
∑m

k=1 aikEkj as specified above. If
it does not, then the secret share is invalid and player j broadcasts a complaint
against player i. In response, player i will broadcast sij , s

′
ij to demonstrate that

Eq. 1 is satisfied. If player i broadcasts a pair of secret shares that did not satisfy
Eq. 1, then the other players will mark i as invalid, since the external secret of
player i is not consistent with any internal secret, and hence it will be impossible
to recover the secret key if it includes this share.

At this point, V is well defined and each checking group Qi knows whether
i ∈ V , since the decision is based on broadcast information. At this point both the
global private key x and public key y are well defined by the following equations,



where T is a linear function (e.g., an inner product with a fixed vector, v):

a ,
∑

i∈V

ai

x ,
∑

i∈V

T (ai)

= T (a)

y , gx mod p

Revealing the public key Note that the public key is not yet publicly known.
This is necessary to ensure that an attacker does not skew its distribution by
manipulating the set V . After V is established, the public key may be safely
extracted. Every player i ∈ V broadcasts their share of the public key, the
vector Ai = gai mod p. The other players will check if Eq. 2 holds.

Like the previous check, if the rules of the algorithm are followed, the equal-
ity holds. If it does not and player j broadcasts a complaint, the allegation of
cheating is treated with more caution than before. Specifically, player j must
prove that her complaint is valid by broadcasting sij , s

′
ij . The other players will

check that Eq. 1 holds for these secret shares. If it does, then it is very likely that
these shares are indeed from player i. They will also check Eq. 2 to validate the
complaint. If it is valid, all honest users will reconstruct ai by broadcasting their
shares. This is the straightforward process of solving a set of linear equations
that specify the internal secret for that player. The number of shares required
for reconstruction depends on the structure of E and ai.

Using the private key Based on the definition of x, it suffices to find a. We can
find a directly through the relation aE = (x1, x2, . . . , xn) if we know a sufficient
fraction of the xi. This fraction is a function of the structure of E. It is desirable,
however, to never reveal a. Note that since a is a linear function of the xi we can
write a = (x1, x2, . . . , xn)Σ, where Σ is the pseudo-inverse of E. If T (a) = av
then T (a) = (x1, x2, . . . , xn)Σv. If the signature or encryption is of the form gx,
then each player can sign gxi and the signatures or encryptions are combined as
∏

gxiLi , where Li is the ith row of Σv. Of course, if only a subset of the xi are
available, a different Σ must be used.

3.4 GJKR DKG

Before diving into sparse matrix DKG, we will show how the algorithm intro-
duced by Gennaro, Jarecki, Krawczyk, and Rabin fits into the more generic
matrix evaluated DKG framework. This protocol was introduced to eliminate a
security flaw in the simpler Joint-Feldman protocol proposed by Pedersen where
an adversary could bias the distribution over public keys.

Let E be the Vandermonde matrix with m , t + 1 rows and n columns,
where t is the security threshold of the system:

Eij = ji−1



Each ai is a random m element column vector so that |Qi| = n. The matrix
makes the external secret, si, the same as evaluations of a polynomial (with
coefficients defined by the internal secret) at the points 1, 2, . . . , n.

The private key is just a function applied to the sum of the internal secrets
of the valid players. The function in this case is T (b1, b2, . . . , bm) = b1. Each
player’s share of this secret is the sum of the shares they hold from the other valid
players. Equivalently, each player’s share is the evaluation at a certain point of
the polynomial created by summing the polynomials of the valid players. Since all
the polynomials are of degree t, any t+1 of the

∑

i∈V sij will allow interpolation
to reconstruct

∑

i∈V ai. Hence with t+1 valid shares, the algorithm can succeed
in revealing the public or private key. Of course, since the private key should
never be revealed, it is possible to use the key using just the evaluations of the
polynomial through Lagrange interpolation coefficients.

Assuming that each server behaves properly, this algorithm incurs commu-
nication cost per player of O(t) broadcast bits and O(n) messages, assuming
no faulty players. Achieving the broadcast through Byzantine agreement is very
expensive. In the the two phases of the algorithm, each server performs O(tn)
operations. This occurs because each server must check every other server, and
checking each server is an O(t) operation.

4 Sparse Matrix DKG

To reduce both communication cost and computational complexity, we introduce
a technique that that relies on a sparse evaluation matrix. This produces a
(γ−ε, γ+ε, δ) probabilistic threshold DKG algorithm for 0 < γ < 1

2 , ε > 0, δ > 0.

4.1 Intuition

The basic algorithm only requires a user to communicate with her checking group
(to share her secret) and with all the checking groups to which she belongs (to
determine whether those users behaved as the protocol dictates). To reduce the
communication complexity of the algorithm it is sufficient to make these checking
groups small. However, they must be sufficiently large so that a majority of the
group is honest. If the groups are logarithmic in size, Hoeffding bounds give an
inverse-polynomial probability of a group failing this criteria, assuming that the
fraction of honest players is greater than a half. For recovery to be possible, the
internal secret of a player must have fewer degrees of freedom than the number
of honest recipients of her shares. A sparse, structured evaluation matrix is the
tool that we use to map small secrets onto small checking groups.

4.2 Sparse Evaluation Matrix

By imposing constraints on the number of non-zero entries in each user’s internal
secret and having a very structured evaluation matrix, we reduce the cost of the
problem from quadratic to polylogarithmic in the number of users. Figure 1
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Figure 1. An illustration of an evaluation matrix for γ = 1

2
. Here n = 64, ` = 8. Each

dot indicates a non-zero position in the matrix.

illustrates the evaluation matrix used for an
(

1
2 − ε, 1

2 + ε, δ
)

instance of the
algorithm. Each row of the evaluation matrix has ` consecutive, random entries
offset by two columns from the previous row. Since the matrix must have n
columns, it must also have m , (n − `)/2 + 1 rows. We will show that for
` = O(log n), the algorithm can recover the key with a 1

2 + ε fraction of honest
shares with high probability. In general, for γ ≤ 1

2 , the evaluation matrix E has
the band in each row offset by γ−1 columns (on average) from the previous row
and hence there are m ≈ γ(n − `) rows in E. Intuitively, this offset allows most
sets of γn columns of the matrix to have full rank. The rest of the description
of the algorithm and the accompanying proofs assume γ = 1

2 .

4.3 Dealing Phase

The dealer must generate O(n log n) independent random bits for the analysis
of this algorithm to succeed. This randomness is used to determine two things.
First, it establishes the evaluation matrix E. The second use is to create a
permutation of the users. All aspects of the algorithm require the adversary
and honest players to be distributed at random. Any large cluster of dishonest
players leaves part of the private key vulnerable.

Unfortunately, it isn’t practical to distribute that many bits to all the players.
It is reasonable, however, for the dealer to send each player his identifier as
determined by the permutation. Then player i only needs to know the columns
Qi and

⋃

j|i∈Qj
Qj of E. The first group is needed to produce the shares to send

to other players and the second, larger group is needed to check and possibly
reconstruct other players’ shares. As we will see, this is a logarithmic number
of columns, and hence a polylogarithmic number of random bits. All players



will also query the dealer for the addresses of their peers. Since the dealer is
assumed to be honest, these bits need not be “broadcast”; a simple point-to-
point distribution suffices.

4.4 Making and sharing the secret

Player i creates a (sparse) internal secret vector, ai that contains only u = `/2ε2

non-zero, consecutive elements. The position of these elements is chosen to
equally distribute the checking load among all the players. Specifically, player i
will have her terms start at dim−u

n
e. The structure of both the internal secret

vectors and the evaluation matrix mean that not all players are given non-zero
shares by player i. This defines the checking group, Qi. The only recipients of
broadcasts regarding player i are members of her checking group. In this setting
of γ, there will be ` + 2(u − 1) (non-zero) shares, so that an adversary who
controls any 1/2− ε/2 fraction of these still has fewer than u shares.

To prove that these shares were constructed from the same internal secret
vector, it is necessary for player i to broadcast the Cij as defined above to Qi.
Since our system model uses Byzantine agreement to achieve broadcast, the
relatively small number of non-zero shares reduces the number of participants
in this operation. In this algorithm, since the set of players outside of Qi has no
evidence as to whether player i is or is not valid, the other players will take a
majority vote of the checking group to determine that. We are guaranteed that
all the honest players in the checking group will agree whether player i is valid
since they are privy to the same information. We must then show that a majority
of Qi is honest. This is a straightforward application of Hoeffding bounds since
the expected fraction of honest players in any group is γ + ε:

Pr
(

|{x ∈ Qi : x is dishonest}| >
(

γ −
ε

2

)

|Qi|
)

≤ 2 exp

(

−
(|Qi|ε/2)2

2|Qi|

)

= 2 exp

(

−
|Qi|ε

2

8

)

Hence, since |Qi| > `
ε2

, if ` > O((1 + κ) log n), then the probability is bounded
by n−1−κ and the probability that all checking groups have a majority honest
players is 1 − n−κ by a union bound.

4.5 Extracting the public key

Revealing the public key occurs just as in the more general description. In the
proof of correctness, we show that it happens with high probability. A third party
who wishes to discover the public key that the algorithm has generated needs to
ask each checking group for the checked user’s share and take the majority (the
checking group may also respond that the player is invalid). This is an O(n log n)
operation. It is reasonable to assume that the dealer poll each player about the
other players that they have checked, tally these votes for each player, multiply



the public key shares for the valid players and then send the public key to every
player.

It may be desirable to do this operation in a more distributed fashion. It is
certainly not practical for each player to poll each checking group. Instead, a
message passing algorithm to tally the public key is feasible. Here we set up a
binary partition of all the players. At the bottom of a binary tree are small2,
non-overlapping groups of users for which the public key share of each (valid)
member is known to all in the group. As one moves up the tree, these shares
are multiplied to establish the shares of larger groups. The global public key
is found at the top of the tree. A logarithmic sized group is responsible for
each aggregation point within the binary tree. The public key, once found, may
be passed back down the tree to each user. By restricting communication to
the edges of the tree, each player need only communicate with O(log n) other
players.

4.6 Using the global secret

As described above, the global secret is maintained as shares kept by each of
the valid users. However, to be useful in threshold cryptosystems, it must be
possible to apply this key for a signature without having all shareholders act.
The structure of the evaluation matrix assists us in this regard. Discovering the
value of the private key requires the solving for a (implicitly). If we can find the
inversion matrix Σ, we will be able to recover the private key. This is possible
if the submatrix of the evaluation matrix corresponding to the valid users has
rank m.

4.7 Recoverability

We assume that there are βn players (β , γ + ε) that will contribute their
shares to sign (or decrypt) a message. Let S be the set of these players. Our
goal is to show that E|S , the m × |S| submatrix of E consisting of the columns
corresponding to good shares has rank m. We first state a lemma that concerns
biased random walks. In the appendix, we prove this lemma for γ = 1

2 . It is
straightforward to extend this to arbitrary γ.

Lemma 1. An n step random walk that reflects at zero, with (γ + ε)n steps of
1 − γ−1 and (1 − γ − ε)n steps of +1, will reach O(κ log n) with probability less
than n−κ, for fixed ε.

We can now prove our theorem concerning the rank of E|S , in the case that
γ = 1

2 .

Theorem 1. The matrix E|S formed by randomly deleting αn columns from
E, α = 1

2 − ε, will have rank m with probability 1 − n−κ if each row of E has

` = − (2+κ)
log(1−2ε) log n consecutive, non-zero, random entries.

2 It is important that these groups be large enough that there be a low probability of
a corrupt majority. It suffices for them to be of size Ω(log n).



Proof. The theorem is proved by showing that a subset of m columns of E|S ,
taken as a matrix E|′S , has random elements along its main diagonal. Consider
the process adding columns from E to E|S . Each row of E has ` non-zero,
consecutive entries, called the band. We consider the incremental process of
examining columns in order. If a column is present, and the column is not to
the left of the band for the current row being considered (i.e., the row r for
which we want a random value at (E ′

S)rr), that column is added to E|′S , and
the next row is considered. Let Xi denote the offset of column i in the non-zero
entries of the currently considered row, Ri (where i is a column index for the full
matrix, E). For example, in Fig. 1, if i = 8 for row 3 the offset is 4. In general,
Xi = i− 2(Ri − 1). If Xi ever exceeds `, the process fails since none of the later
columns will be able to contribute a random element for the diagonal entry at
the current row. Define X1 = 1, R1 = 1. Now consider the state Xi. If column i
is missing, we stay at the current row, Ri+1 = Ri, but step forward in relation
to the beginning of the band. Hence Xi+1 = Xi + 1. Now if column i is present,
there are two possibilities. If Xi ≥ 1, the column is added and Ri+1 = Ri + 1,
so that column i + 1 would be one step forward in the same row, but one step
behind in the next row (since the rows are offset by two relative to each other),
and Xi+1 = Xi − 1. Now if Xi = 0 a present column does not help since we are
in front of the band, so Xi+1 = 0, Ri+1 = Ri.

Observing just the Xi, the process is identical to the reflecting random walk
process defined above. Applying the random walk lemma, we may bound the
probability that the walk passes t after n steps, one for each column of A. This
probability is just:

P (process fails) = P (walk passes ` in n or fewer steps) < n−κ

4.8 Correctness

Theorem 2. The sparse matrix DKG algorithm described above is a probabilis-
tic threshold

(

1
2 − ε, 1

2 + ε, 2n−κ
)

DKG algorithm for ` = O(κ log n), the width
of the band in the constraint matrix.

Proof. (C1) The honest players within checking group Qi always agree whether
player i is in V , since that decision is made based on broadcast information.
Honest players outside the checking group will rely on a majority vote of the
checking group to determine if player i is included in V . Then the set V that
is established in step 3 of the algorithm is unique if each checking group has a
majority of honest players, which happens with probability 1 − n−κ. Assuming
the adversary is not able to compute dloggh, the check in Eq. 1 implies that the
player’s shares are all consistent with the same ai. The reconstruction theorem
implies that the honest players for any set of rows will have full rank, so they are
consistent with a unique ai, with probability 1 − n−κ. Since all honest players
have shares that satisfy Eq. 1, any set of them are able to recover x or not recover
anything (in the case that the submatrix that they define is not invertible).

(C2) In the case where a valid complaint is filed against player i, this ai is
reconstructed in public using the reconstruction theorem and Ai = gai mod p.



Now we consider the case where no valid complaints are filed. Since ai could
have been reconstructed with the shares from the honest players, there are at
least u linearly independent equations and u unknowns, so that there must be a
unique solution. Since the broadcast from player i agrees with these equations,
through Eq. 2, the broadcast Ai is exactly gai . Hence all honest players within
each checking group have the correct value of Ai, i ∈ V , and since there are a
majority of honest players in each checking group, all honest players have the
same value for Ai, i ∈ V and also y = gx mod p.

(C3) The secret is defined as x =
(
∑

i∈V ai

)

v. Since v is random, any random
term of some ai that is independent from the other aj will cause x to be uniform.
In the proof of secrecy, we show that the adversary cannot determine any ai

completely for an honest player i, so the dishonest players’ aj is independent of a
term of every honest ai. Also honest players choose all their terms independently,
so the ai from any honest player will satisfy this requirement.

(C4) This is a direct application of the reconstruction theorem.

4.9 Secrecy

To show that the adversary is not able to learn any information about the
private key x other than the fact that it is the discrete log of the public key y,
we create a simulator. Formally, a simulator is a probabilistic polynomial-time
algorithm that given y ∈ Zp, such that y = gx mod p for some x, can produce
a distribution of messages that is indistinguishable from a normal run of the
protocol where the players controlled by the simulator are controlled instead by
honest players. This is the familiar technique used to show that zero-knowledge
proofs do not reveal any private information. However, since our algorithm relies
on a random distribution of adversarially controlled players, our simulator will
only have a high probability of success.

We assume that the adversary controls no more than a 1
2 − ε fraction of the

players, chosen before the start of the algorithm. Recall that in section 4.4 we
required that the adversary control no more than a 1−ε

2 fraction of any checking

group. Hence each checking group contains less than 1−ε
2

(

` + 2
(

`
2ε2

− 1
))

<
`

2ε2
< u adversarially controlled players and the adversary cannot learn an honest

player’s entire internal secret.
The input to the simulator is a y that could have been established at the end

of a normal run of the protocol. Assume that the adversary controls the set B =
{B1, B2, . . . , Bt} and that the honest parties (controlled by the simulator) are
G = {G1, G2, . . . , Gn−t}. In a non-simulated run of the protocol that ends with
the public key y, the a′

i are uniform random vectors, subject to the sparseness
constraint, and the ai are random vectors subject to both

∏

i∈V

∏

j gaijvj = y
and the sparseness constraint.

Consider the following algorithm for the simulator, SIM:

1. Each honest player i ∈ G performs steps 2 and 3 of the sparse matrix DKG
protocol. At this point:
– The set V is well defined and G ⊆ V .



– The adversary B has seen ai, a
′
i for i ∈ B, sij , s

′
ij for i ∈ V, j ∈ B and

Cij for i ∈ V .
– SIM knows ai, a

′
i for all i ∈ V (including those in V ∩ B, the internal

secrets for the consistent adversary players).
2. Perform the following calculations:

– Compute Ai , gai mod p for i ∈ V \ {G1}.
– Let S be a subset of QG1

, the checking group for G1, that contains all
of QG1

∩B and enough of QG1
∩ G so that the rank of E|S , the columns

of E corresponding to S, has rank u − 1. Let r be some i such that the
columns S ∪ {r} have rank u.

– Assign s∗G1j , sG1j for j ∈ S.
– Let S′ be a subset of u− 1 elements of S such that the columns S ′ of E

have rank u − 1.
– Compute Σ, the inverse of the submatrix of E corresponding to the

columns S′ ∪ {r} and the rows 1, . . . , u (i.e., assume wlog that G1 = 1).
– Note that a∗

G1
= (s∗G1S′

1

, . . . , s∗G1S′

u−1

, s∗G1r)Σ, but s∗G1r has not yet been

fixed. Similarly A∗
G1

= (gα1+β1s∗

G1r , . . . , gαu+βus∗

G1r), where the αi, βi are
functions of Σ and s∗G1j , j ∈ S′.

– For our construction to succeed,
∏

j A
vj

Gij
= y

(

∏

i∈V \{G1}

∏

j A
vj

ij

)−1

.

The right hand side is known and of the form gγ , and the left hand
side is of the form gα+βs∗

G1r . Hence we can solve to find gs∗

G1r and then
evaluate the expression for A∗

G1
.

3. Broadcast Ai for i ∈ G \ G1 and A∗
G1

.
4. Perform the checks of step 4.(b) of the algorithm for each player i ∈ G on the

Aj , j ∈ B broadcast by the adversary’s players and broadcast any necessary
complaints.

5. The adversary cannot file a valid complaint against any honest player since
all the messages followed the protocol. However, the simulator must recover
from the adversary’s actions. The simulator will follow the protocol of 4.(c)
to recover the ai for players who did not share their Ai properly.

The simulator will result in an identical distribution of the observed ai, a
′
i as

would be expected from a non-simulated run that generated the public key y.
This is because the simulator uses the original, random ai, a

′
i for i ∈ G \G1. Also

a∗
G1

is chosen to be random subject to the constraint above. It remains to be

shown that a
′∗
G1

is also random. The relationship between a∗
G1

, a
′∗
i is established

through the public CG1
= ga∗

G1 ha
′
∗

G1 . This implies a
′∗
G1

= dlogg(h)−1 · (aG1
−

a∗
G1

) + a′
G1

, which inherits its randomness from a′
G1

.

4.10 Communication Complexity and Running Time

The primary objective of the matrix-based constraint algorithm is to reduce
both the communication complexity and running time for the users participat-
ing in the key generation without significantly affecting the chance that the



algorithm fails to properly generate a key. As described above, a fraction of each
user’s secret as well as a bit-committed version of the secret will be sent to
`/2ε2 = O(log n) other users. Hence this communication accounts for O(`2)
messages since the secret is of length O(`), using Byzantine agreement for the
broadcast. If γ > 1

3 , then we must use authenticated Byzantine agreement [6].
Also, we will incur greater costs in the dealing phase since this operation can-
not be simply composed [7]. If γ < 1

3 we can reduce the dealing cost by using
the technique proposed by Cachin, Kursawe and Shoup [3]. In the presence of
dishonest players, this cost grows by a factor of O(`) since each dishonest player
can cause two more broadcasts to occur within the checking group. In the second
phase of the protocol, without any adversaries the cost is again O(`2) messages.
With adversaries, this cost again increases by a factor of O(`) since each member
of the checking group must broadcast.

The running time for this algorithm is also much shorter than that of previous
solutions to this problem. Each player is a member of O(`) checking groups and
must check one equation for each. Each equation is a product of O(`) modular
exponentiations, so the cost is O(`2) exponentiations.

The constants in these asymptotic expressions are very reasonable. For an
n−2 chance of failure, if ε = 1/10, then a suitable setting for ` is 17 logn. A
linear increase of ` results in either an exponentially smaller failure probability
or a linear decrease in ε. Since the checking groups are of size `

2ε2
, they are more

sensitive to the value of ε. In practice, it is reasonable for the gap between the the
fraction of dishonest parties and the fraction of shares required for reconstruction
to be a fixed constant, so the size of the Qi is logarithmic with a small leading
constant.
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5 Appendix

Lemma 2. Consider a (reflecting) random walk Xi defined in terms of a se-
quence of differences Di:

X0 = 0

Xi+1 = max(0, Xi + Di+1)

The sequence of differences D1, D2, . . . , Dn, is generated at random and satisfies:

|{i|Di = 1}| = αn , r, |{i|Di = −1}| = (1 − α)n , s

Let α , 1/2−ε. Then the probability that the walk has reached ` , − (2+κ)
log(1−2ε) log n

in n or fewer steps is P (Xj = `, j ≤ n) < n−κ.

Proof. Let Bi,j be the event that Xi+j = `, Xi = 0, Xk 6= 0, i < k < i + j. That
is the event where i is the last time that the walk is at 0 and the walk is at ` after
j more steps. Of those j steps, such a walk will have exactly ` more steps to the
right than steps to the left. Hence there are d ,

j−`
2 left steps and d + ` right

steps. There are fewer than
(

j
d

)

ways to choose the order of the steps. Condition
the sequence of differences on those j steps:

P (Bi,j) <

(

j

d

)

(

∏d−1
k=0(s − k)

) (

∏d+`−1
k=0 (r − k)

)

∏j−1
k=0(n − k)

=

(

j

d

) d−1
∏

k=0

(s − k)(r − k)

(n − 2k)(n − 2k − 1)

`−1
∏

k=0

r − d − k

n − 2d − k

Observe that if a+b = c and b < c
2−1 then ab

c(c−1) < 1
4 . Also r−d−k

n−2d−k
< r

n
= 1

2−ε,

for arbitrary d, k since r < n
2 so that:

P (Bi,j) <

(

j

d

) (

1

4

)

j−`
2

(

1

2
− ε

)`

=

(

j

d

) (

1

2

)j

(1 − 2ε)
`

< (1 − 2ε)`

So P (Bi,j) < (1− 2ε)` = n−(2+κ). Now there are fewer than n choices for either
i or j so that P (∪i,jBi,j) < n2n−(2+κ) = n−κ.


