
Cell Modeling using Agent-based Formalisms
Kenneth Webb, Tony White

Sussex University, U.K, Carleton University, Canada
k.s.webb@sussex.ac.uk, arpwhite@scs.carleton.ca

Abstract
The systems biology community is building increasingly
complex models and simulations of cells and other
biological entities. This community is beginning to look at
alternatives to traditional representations such as those
provided by ordinary differential equations (ODE).
Making use of the object-oriented (OO) paradigm, the
Unified Modeling Language (UML) and Real-time Object-
Oriented Modeling (ROOM) visual formalisms, we
describe a simple model that includes membranes with
lipid bilayers, multiple compartments including a variable
number of mitochondria, substrate molecules, enzymes
with reaction rules, and metabolic pathways. We
demonstrate the validation of the model by comparison
with Gepasi and comment on the reusability of model
components.

1 Introduction
Researchers in bioinformatics and systems biology are

increasingly using computer models and simulation to
understand complex inter- and intra-cellular processes.
The principles of object-oriented (OO) analysis, design,
and implementation, as standardized in the Unified
Modeling Language (UML), can be directly applied to
top-down modeling and simulation of cells and other
biological entities. This paper describes how an abstracted
cell, consisting of membrane-bounded compartments with
chemical reactions and internal organelles, can be
modeled using tools such as Rational Rose RealTime
(RRT), a UML-based software development tool. The
resulting agent-based approach, embodied in CellAK (for
Cell Assembly Kit), produces models that are similar in
structure and functionality to those that can be specified
using the Systems Biology Markup Language (SBML)
[1], and CellML [2], and implemented using E-CELL [3],
Gepasi [4], Jarnac [5], StochSim [6], Virtual Cell [7], and
other tools currently available to the biology community.
We claim that this approach offers greater potential
modeling flexibility and power because of its use of OO,
UML, ROOM, and RRT, which utilizes the actor concept
in its implementation. The OO paradigm, UML
methodology, and RRT tool, together represent an
accumulation of best practices of the software
development community, a community constantly
expected to build more and more complex systems, a
level of complexity that is starting to approach that of
systems found in biology. CellAK represents, therefore,

an agent-based cell modeling environment built on top of
state of the art software modeling tools and practices.

All of these approaches mentioned above make a
fundamental distinction between structure and behavior.
This paper deals mainly with the top-down structure of
membranes, compartments, small molecules, and the
relationships between these, but also shows how bottom-
up behavior of active objects such as enzymes, transport
proteins, and lipid bilayers, is incorporated into this
structure to produce an executable program.

We do not use differential equations to determine the
time evolution of cellular behavior, as is the case with
most of the cell modeling systems described in this paper.
Differential equations find it difficult to model directed or
local diffusion processes and subcellular
compartmentalization [8]. CellAK more closely resembles
Cellulat [9] in which a collection of autonomous agents
(our active objects – enzymes, transport proteins, lipid
bilayers) act in parallel on elements of a set of shared data
structures called blackboards (our compartments with
small molecule data structures). Differential equation-
based models are also difficult to reuse when new aspects
of cell structure need to be integrated. The motivation for
this paper is the demonstration of a high degree of reuse
in the agent-based models that have been developed;
reuse of behavior and structure, both separately and in
combination. Finally, we note that agent-based modeling
of cells is becoming an area of increasing research interest
[8, 9] thereby prompting the communication of this
research.

This paper consists of 4 further sections. The next
section introduces the Real-Time Object- Oriented
Methodology (ROOM). A CellAK model is then
described that uses the concepts of inheritance,
containment, ports and connectors. Having introduced the
model, a validation section is provided. The paper
concludes with a review of key messages and references
to future work.

2 The ROOM formalism
David Harel, originator of the hierarchical state

diagram formalism used in the Universal Modeling
Language (UML) [10], and an early proponent of visual
formalisms in software analysis and design [11], has
argued that biological cells and multi-cellular organisms
can be modeled as reactive systems using real-time
software development tools [12,13].

Reactive systems are those whose complexity stems
not necessarily from complicated computation but from
complicated reactivity over time. They are often highly
concurrent and time-intensive, and exhibit hybrid
behavior that is predominantly discrete in nature but has
continuous aspects as well. The structure of a reactive
system consists of many interacting components, in which
control of the behavior of the system is highly distributed
amongst the components. Very often the structure itself is
dynamic, with its components being repeatedly created
and destroyed during the system’s life span, see [13 p.5].

Rational Rose RealTime (RRT) is a visual design and
implementation tool for the production of
telecommunication systems, embedded software, and
other highly-concurrent real-time systems. It combines
the features of UML with the real-time specific features
and visual notation of the Real-time Object-Oriented
Modeling (ROOM) [14]. A RRT application’s main
function is to react to events in the environment, and to
internally-generated timeout events, in real-time.

Software developers design software with RRT by
decomposing the system into an inheritance hierarchy of
classes and a containment hierarchy of actors, using UML
class diagrams. Each architectural actor, or capsule as
they are called in RRT, contains a UML state diagram
that is visually designed and programmed to react to
externally generated incoming messages (generated
within other capsules or sent from external systems), and
to internally-generated timeouts. The agents in a CellAK

system are the architectural actors in a RRT model.
Messages are exchanged through ports defined for each
capsule. Ports are instances of protocols, which are
interfaces that define sets of related messages. All C++,
C, or Java code in the system is executed within actors’
state diagrams, along transitions from one state to another
(which may be a self-transition to the same state). An
executing RRT system is therefore an organized
collection of communicating finite state machines. The
RRT run-time scheduler guarantees correct concurrent
behavior by making sure that each transition runs all of its
code to completion before any other message is
processed.

The RRT design tool is visual. During design, to
create the containment structure, capsules are dragged
from a list of available classes into other classes. For
example, the designer may drag an instance of Nucleus
onto the visual representation of EukaryoticCell, thus
establishing a containment relationship. Compatible ports
on different capsules are graphically connected to allow
the sending of messages. UML state diagrams are drawn
to represent the behavior of each capsule. Other useful
UML graphical tools include use case diagrams, and
sequence diagrams. External C++, C, or Java classes can
be readily integrated into the system. RRT allows the time
evolution of a simulation to be watched, instrumented
with breakpoints, and stepped through.

The developer generates the executing system using
visual programming, dragging and dropping objects onto
a graphical editor canvas. RRT generates all required
code from the diagrams, and produces an executable
actor-based program. The executable can then be run and
observed using the design diagrams to dynamically
monitor the run-time structure and behavior of the system.

The powerful combination of the actor/OO paradigm
as embodied in the UML and ROOM visual formalisms
with the added flexibility of the C, C++ or Java
programming languages, bundled together in a
development tool such as RRT, provide much that is
appropriate for biological modeling.

Figure 1: UML Diagram for BioEntities

To summarize, benefits of the CellAK that are of use
in cell and other biological modeling that have been
identified so far in this paper include: support for
concurrency and interaction between entities, scalability
to large systems, use of inheritance and containment to
structure a system, ability to implement any type of
behavior that can be implemented in C, C++ or Java, actor
instantiation from a class, ease of using multiple instances
of the same class, and subclassing to capture what entities
have in common and how they differ.

3 The Model

3.1 Classes, Capsules and Containment
The purpose of the small example system described

here is to model and simulate metabolic pathways,
especially the glycolytic pathway that takes place within
the cytoplasm, and the TCA cycle that takes place within
the mitochondrial matrix. It also includes a nucleus to
allow for the modeling of genetic pathways in which
changes in the extra cellular environment can effect

changes in enzyme and other protein levels. The model is
easily extensible, to allow for specialized types of cells.

Figure 1 shows a set of candidate entities organized
into an inheritance hierarchy, drawn as a UML class
diagram. The lines with a triangle at one end are the
standard UML notations for inheritance. Erythrocyte and
NeuronCellBody are particular specializations of the more
generic EukaryoticCell type. CellBilayer,
MitochondrialInnerBilayer, and
MitochondrialOuterBilayer are three of potentially many
different subclasses of LipidBilayer. These three share
certain characteristics but typically differ in the specific
lipids that constitute them. The figure also shows that
there are four specific Solution entities, each of which
contains a mix of small molecules dissolved in the
Solvent water. All entity classes are subclasses of
BioEntity.

Figure 2 shows a different hierarchy, that of
containment. This UML class diagram shows that at the
highest level, a EukaryoticCell is contained within an
ExtraCellularSolution. The EukaryoticCell in turn
contains a CellMembrane, Cytoplasm, and a Nucleus.
This reductionist decomposition continues for several
more levels. It includes the dual membrane structure of a
Mitochondrion along with its inter-membrane space and
solution and its internal matrix space and solution. Part of
the inheritance hierarchy is also shown in these figures.
Each Membrane contains a LipidBilayer, but the specific
type of bilayer (CellBilayer, MitochondrialInnerBilayer,
MitochondrialOuterBilayer) depends on which type of
membrane (CellMembrane,
MitochondrialInnerMembrane,
MitochondrialOuterMembrane) it is contained within.

3.2 Specifying
Adjacency

A model is
constructed of
capsules, which
are instances of
classes shown
in Figure 1.
Capsules are
arranged in a
containment
hierarchy as
shown in
Figure 2.
Capsules
represent the
agents in a
CellAK
simulation.
Connectivity
between capsules determines adjacency; i.e. how changes

Figure 3: Eukaryotic Cell Capsule Structure

Figure 2: Containment Hierarchy

in the state of one capsule affect another. Changes occur
through the exchange of messages.

In a EukaryoticCell, CellMembrane is adjacent to and
interacts with Cytoplasm, but is not adjacent to and
therefore cannot interact directly with Nucleus.
Interactions between CellMembrane and Nucleus must
occur through Cytoplasm. It is important to have a
structural architecture that will place those things adjacent
to each other that need to be adjacent, so they can be
allowed to interact.

Adjacency is represented using protocols. A protocol
is a specific set of messages that can be exchanged
between capsules to allow interaction. The Configuration
protocol has two signals - ConfigSig and MRnaSig. When
the simulation starts, the Chromosome within the Nucleus
sends a ConfigSig message to the Cytoplasm, which will
recursively pass this message to all of its contained
capsules. When an active object such as an Enzyme
receives the ConfigSig message, it determines its type and
takes on the characteristics defined in the genome for that
type. When a Solution such as Cytosol receives the
ConfigSig message, it extracts the quantity of the various
molecules that it contains, for example how many glucose
and how many pyruvate molecules. In addition to being
passed as messages through ports, configuration
information may be also be passed in to a capsule as a
parameter when it is created. This is how the entire
Mitochondrion containment hierarchy is configured. In
this approach, Nucleus is used for a purpose in the
simulation that is similar to its actual role in a biological
cell. The MRnaSig (messenger RNA signal) message can
be used to reconfigure the system by creating new
Enzyme types and instances as the simulation evolves in
time.

The Adjacency protocol allows configured capsules to
exchange messages that will establish an adjacency
relationship. Capsules representing active objects
(Enzymes, PyruvateTransporter and other types of
TransportProtein, LipidBilayer) that engage in chemical
reactions by acting on small substrate molecules, will
send SubstrateRequest messages. Capsules that contain
small molecules (types of Solution such as Cytosol,
ExtraCellularSolution, MitochondrialIntermembranesol,
Matrixsol) will respond with SubstrateLevel messages.

Figure 3 is a capsule structure diagram that shows
EukaryoticCell and its three contained capsules with
named ports and connector lines between these ports. The
color of the port (black or white) indicates the relative
direction (in or out) of message movement.

Figure 3 represents a significantly simplified model;
the final model includes all of the capsules shown in
Figure 2. The full model is shown in Figure 4. A full
description of Figure 4 is, however, beyond the scope of
this paper.

Defining the desired behavior of the system is
achieved by specifying patterns of message exchange
between capsules.

In the sample model, the glycolytic pathway is
implemented through the multiple enzymes within
Cytoplasm, all acting concurrently on the same set of
small molecules within Cytosol. The TCA metabolic
pathway is similarly implemented by the concurrent
actions of the multiple enzymes within Matrix acting on
the small molecules of the Matrixsol. Movement of small
molecules across membranes is implemented by the
various lipid bilayers. For example, lipidBilayer within
MitochondrialOuterMembrane transports pyruvate from
the Cytosol to the MitochondrialIntermembranesol, and
pyruvateTransporter within MitochondrialInnerMembrane
transports pyruvate across this second membrane into the
Matrixsol.

3.3 Enzyme Behaviour
Figure 5 shows the UML state diagram representing

the behavior of an Enzyme active object. When first
created, it makes the initialize transition. As part of this
transition it executes a line code that sends a message out
its adj port. When it subsequently receives a
SubstrateLevel response message through the same adj
port, it stores the SmallMolecule reference that is part of
that message, creates a timer so that it can be invoked at a
regular interval, and makes the transition to the Active
state.

The state diagrams for lipid bilayers and transport
proteins are much the same, but include additional states
because they need to connect to two small molecule
containers, one inside and the other outside.

Figure 5: Enzyme state machine

3.4 Kinetics and Enzyme Reactions
Enzyme reactions can take various forms. In this

paper, we consider the simplest case, in which an enzyme
irreversibly converts a single substrate molecule into a
different product molecule. By irreversible is meant that
the enzyme cannot also convert the product into the
substrate. More complex reactions include combining two
substrates into one resulting product, splitting a single
substrate into two products, and making use of activators,
inhibitors, and coenzymes.

In the C++ code below, which implements irreversible
Michaelis-Menten kinetics [15 p.148+], [4] sm-> is a
reference to the SmallMolecule data structure that in this
case is located in Cytosol, while gene-> refers to a
specific gene in the Chromosome. All processing by
active objects makes use of these two types of data, data
that they know about because of the two types of message
exchange that occur during initial configuration.
1. Irreversible, 1 Substrate, 1 Product, 0 Activator, 0 Inhibitor, 0
Coenzyme
2. case Irr_Sb1_Pr1_Ac0_In0_Co0:

3. s = sm-

>molecule[gene->substrateId[0]].get();
4. nTimes = enzymeLevel * ((gene->substrateV * s) / (gene-
>substrateK + s));
5. sm->molecule[gene->substrateId[0]].dec(nTimes);
6. sm->molecule[gene->productId[0]].inc(nTimes);
7. break;

The gene in CellAK is encoded as a set of features
that includes protein kinetic constants. For example, in the
code above, gene->substrateV refers to V the upper
limit of the rate of reaction, and gene->substrateK
is the Michaelis constant Km that gives the concentration
of the substrate molecule s at which the reaction will
proceed at one-half of its maximum velocity.

The Gepasi software package [4] performs the same
processing using ODEs. Gepasi implements irreversible
Michaelis-Menton kinetics, which is implemented on line
4 of the code above in our model.

3.5 Validation
The main focus in CellAK has been on a qualitative

model, but this approach also provides quantitative results
which very closely approximate those computed using
Gepasi, a tool that does claim to produce accurate
quantitative results. In addition to the practical value of
having CellAK generate accurate results, these also help
to validate its design and implementation.

A simplified Glycolytic Pathway model was run in
parallel using CellAK and Gepasi. The model includes the
ten standard enzymes of glycolysis, and the eleven
standard substrate and product metabolites ([15]. 308).
All enzymes are implemented as irreversible, and there
are no activators, inhibitors or coenzymes. Nine of the
enzyme reactions convert one substrate into one product.
The sole exception is the fourth enzyme reaction
(Aldolase) that converts one substrate (Fructose-1,6-
biphosphate) into two products
(DihydroxyacetonePhosphate and Glyceraldehyde-3-

Figure 4: The complete structure of the sample
model, with all capsules, ports, and connectors.
This is an enhancement of Figure 3, with additional
details added.

phosphate). The units of time in both models are seconds,
but more realistically should be thought of simply as
discrete timesteps.

The results of this experiment are shown in Figure 6.
Initially there are 1000000 units of each metabolite. Over
the course of the simulation, during 1000 timesteps, for
ten out of the eleven metabolites, the difference between
the CellAK and Gepasi results is never greater than
0.005%.

There is continuously more Glucose in the CellAK
model with the passage of time than in the Gepasi
version. In CellAK the cell bilayer constantly replenishes
the amount of Glucose in the cytosol by transporting it at
a low rate from the extra cellular solution. This low rate,
as currently implemented, is not sufficient to keep the
Glucose quantitty constant in the cytosol. In both the
Gepasi and CellAK results, the Glucose level decreases
from 1000000 to around 900000 (900160 Gepasi, 903893
CellAK) after 1000 seconds.

4 Conclusions
This paper has described a modeling approach and

tool, CellAK, developed using principles from agent-
based modeling that is suitable for application to
sophisticated cell modeling. We have demonstrated the
validation of the model against Gepasi. The visual nature
of the tool is considerably simpler to understand when
compared to conventional differential equation based
models and, being container based, can more effectively
support system level models proposed by Tomita. We
believe that this paper clearly confirms the value of agent-

based modeling reported in [8]. Further, we have reused
several of the classes and protocols in models of neurons
with considerable success; research that is reported
elsewhere.

Clearly other modeling work is possible. Other active
objects in CellAK (polymers) are also composed of
repeating units of monomers. Becker [15 p.30] states that
there are three major types of polymers in a cell. This
suggests a general principle. Active objects have an
influence on other active objects in CellAK by having an
effect on their constituent monomers. This enhancement
should now be implemented for enzymes, transport
proteins, and other proteins in CellAK. However, proteins
are considerably more complex than lipid bilayers. The
amino acids that constitute a protein are coded for in the
DNA, the order of amino acids is of critical importance,
and the string of amino acids folds into a three-
dimensional shape. The behavior of a protein is therefore
an extremely complex function of its fine-grained
structure. A more tractable problem is found in the
interactions of proteins with each other, such as when one
protein regulates (activates or inactivates) another protein
through the process of phosphorylation [15 p.158], which
involves a relatively simple reversible structural
modification (a change in the fine-grained structure of
another protein). The approach described in this paper
could be applied relatively easily to the modeling of
networks of such interacting proteins.

References
1. Hucka, M., et al., 2003. The systems biology markup

language (SBML): a medium for representation and

Figure 6: Percentage Difference between Gepasi and CellAK Results

exchange of biochemical network models. Bioinformatics
19, 524-531.

2. Hedley, W., et al., 2001. A short introduction to CellML.
Philosophical Transactions - Mathematical Physical and
Engineering Sciences 359, 1073-1089.

3. Tomita, M., et al., 1999. E-Cell: software environment for
whole-cell simulation. Bioinformatics 15, 72-84.

4. Mendes, P., 1997. Biochemistry by numbers: simulation of
biochemical pathways with Gepasi 3. Trends. Biochem.
Sci. 22, 361-363.

5. Sauro, H., 2000. JARNAC: a system for interactive
metabolic analysis. Animating the Cellular Map 9th
International BioThermoKinetics Meeting. University
Press, ISBN 0-7972-0776-7.

6. Morton-Firth, C., Bray, D., 1998. Predicting Temporal
Fluctuations in an Intracellular Signalling Pathway. Journal
of Theoretical Biology 192, 117-128.

7. Loew, L., Schaff, J., 2001. The Virtual Cell: a software
environment for computational cell biology. TRENDS in
Biotechnology 19, 401-406.

8. Khan, S, et al., 2003. A Multi-Agent System for the
Quantitative Simulation of Biological Networks.
AAMAS’03, 385-392.

9. Gonzalez, P., et al., 2003. Cellulat: an agent-based
intracellular signalling model. BioSystems 68, 171-185.

10. Harel, D., 1987. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming 8,
231-274.

11. Harel, D., 1988. On Visual Formalisms. Communications
of the ACM 31, 514-530.

12. Harel, D., 2003. A Grand Challenge for Computing: Full
Reactive Modeling of a Multi-Cellular Animal. LNCS
2623, 2-2.

13. Kam, N., Harel, D., et al., 2003. Formal Modeling of C.
elegans Development: A Scenario-Based Approach. LNCS
2602, 4-20.

14. Selic, B., Gullekson, G., Ward, P., 1994. Real-time Object-
Oriented Modeling. John Wiley & Sons, New York.

15. Becker, W., Reece, J., Poenie, M., 1996. The World of the
Cell, 3rd ed. Benjamin/Cummings, Menlo Park, CA.

16. Harvey, I., Bossomaier, T., 1997. Time Out of Joint:
Attractors in Asynchronous Random Boolean Networks.
ECAL97.

