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Abstract 
The systems biology community is building increasingly 
complex models and simulations of cells and other 
biological entities. This community is beginning to look at 
alternatives to traditional representations such as those 
provided by ordinary differential equations (ODE). 
Making use of the object-oriented (OO) paradigm, the 
Unified Modeling Language (UML) and Real-time Object-
Oriented Modeling (ROOM) visual formalisms, we 
describe a simple model that includes membranes with 
lipid bilayers, multiple compartments including a variable 
number of mitochondria, substrate molecules, enzymes 
with reaction rules, and metabolic pathways. We 
demonstrate the validation of the model by comparison 
with Gepasi and comment on the reusability of model 
components. 

1 Introduction 
Researchers in bioinformatics and systems biology are 

increasingly using computer models and simulation to 
understand complex inter- and intra-cellular processes. 
The principles of object-oriented (OO) analysis, design, 
and implementation, as standardized in the Unified 
Modeling Language (UML), can be directly applied to 
top-down modeling and simulation of cells and other 
biological entities. This paper describes how an abstracted 
cell, consisting of membrane-bounded compartments with 
chemical reactions and internal organelles, can be 
modeled using tools such as Rational Rose RealTime 
(RRT), a UML-based software development tool. The 
resulting agent-based approach, embodied in CellAK (for 
Cell Assembly Kit), produces models that are similar in 
structure and functionality to those that can be specified 
using the Systems Biology Markup Language (SBML) 
[1], and CellML [2], and implemented using E-CELL [3], 
Gepasi [4], Jarnac [5], StochSim [6], Virtual Cell [7], and 
other tools currently available to the biology community. 
We claim that this approach offers greater potential 
modeling flexibility and power because of its use of OO, 
UML, ROOM, and RRT, which utilizes the actor concept 
in its implementation. The OO paradigm, UML 
methodology, and RRT tool, together represent an 
accumulation of best practices of the software 
development community, a community constantly 
expected to build more and more complex systems, a 
level of complexity that is starting to approach that of 
systems found in biology. CellAK represents, therefore, 

an agent-based cell modeling environment built on top of 
state of the art software modeling tools and practices.   

All of these approaches mentioned above make a 
fundamental distinction between structure and behavior. 
This paper deals mainly with the top-down structure of 
membranes, compartments, small molecules, and the 
relationships between these, but also shows how bottom-
up behavior of active objects such as enzymes, transport 
proteins, and lipid bilayers, is incorporated into this 
structure to produce an executable program. 

We do not use differential equations to determine the 
time evolution of cellular behavior, as is the case with 
most of the cell modeling systems described in this paper. 
Differential equations find it difficult to model directed or 
local diffusion processes and subcellular 
compartmentalization [8]. CellAK more closely resembles 
Cellulat [9] in which a collection of autonomous agents 
(our active objects – enzymes, transport proteins, lipid 
bilayers) act in parallel on elements of a set of shared data 
structures called blackboards (our compartments with 
small molecule data structures). Differential equation-
based models are also difficult to reuse when new aspects 
of cell structure need to be integrated. The motivation for 
this paper is the demonstration of a high degree of reuse 
in the agent-based models that have been developed; 
reuse of behavior and structure, both separately and in 
combination. Finally, we note that agent-based modeling 
of cells is becoming an area of increasing research interest 
[8, 9] thereby prompting the communication of this 
research. 

This paper consists of 4 further sections. The next 
section introduces the Real-Time Object- Oriented 
Methodology (ROOM). A CellAK model is then 
described that uses the concepts of inheritance, 
containment, ports and connectors. Having introduced the 
model, a validation section is provided. The paper 
concludes with a review of key messages and references 
to future work. 

2 The ROOM formalism 
David Harel, originator of the hierarchical state 

diagram formalism used in the Universal Modeling 
Language (UML) [10], and an early proponent of visual 
formalisms in software analysis and design [11], has 
argued that biological cells and multi-cellular organisms 
can be modeled as reactive systems using real-time 
software development tools [12,13]. 



   

Reactive systems are those whose complexity stems 
not necessarily from complicated computation but from 
complicated reactivity over time.  They are often highly 
concurrent and time-intensive, and exhibit hybrid 
behavior that is predominantly discrete in nature but has 
continuous aspects as well. The structure of a reactive 
system consists of many interacting components, in which 
control of the behavior of the system is highly distributed 
amongst the components.  Very often the structure itself is 
dynamic, with its components being repeatedly created 
and destroyed during the system’s life span, see [13 p.5]. 

Rational Rose RealTime (RRT) is a visual design and 
implementation tool for the production of 
telecommunication systems, embedded software, and 
other highly-concurrent real-time systems. It combines 
the features of UML with the real-time specific features 
and visual notation of the Real-time Object-Oriented 
Modeling (ROOM) [14]. A RRT application’s main 
function is to react to events in the environment, and to 
internally-generated timeout events, in real-time. 

Software developers design software with RRT by 
decomposing the system into an inheritance hierarchy of 
classes and a containment hierarchy of actors, using UML 
class diagrams. Each architectural actor, or capsule as 
they are called in RRT, contains a UML state diagram 
that is visually designed and programmed to react to 
externally generated incoming messages (generated 
within other capsules or sent from external systems), and 
to internally-generated timeouts. The agents in a CellAK 

system are the architectural actors in a RRT model. 
Messages are exchanged through ports defined for each 
capsule. Ports are instances of protocols, which are 
interfaces that define sets of related messages. All C++, 
C, or Java code in the system is executed within actors’ 
state diagrams, along transitions from one state to another 
(which may be a self-transition to the same state). An 
executing RRT system is therefore an organized 
collection of communicating finite state machines. The 
RRT run-time scheduler guarantees correct concurrent 
behavior by making sure that each transition runs all of its 
code to completion before any other message is 
processed. 

The RRT design tool is visual. During design, to 
create the containment structure, capsules are dragged 
from a list of available classes into other classes. For 
example, the designer may drag an instance of Nucleus 
onto the visual representation of EukaryoticCell, thus 
establishing a containment relationship. Compatible ports 
on different capsules are graphically connected to allow 
the sending of messages. UML state diagrams are drawn 
to represent the behavior of each capsule. Other useful 
UML graphical tools include use case diagrams, and 
sequence diagrams. External C++, C, or Java classes can 
be readily integrated into the system. RRT allows the time 
evolution of a simulation to be watched, instrumented 
with breakpoints, and stepped through.  

The developer generates the executing system using 
visual programming, dragging and dropping objects onto 
a graphical editor canvas. RRT generates all required 
code from the diagrams, and produces an executable 
actor-based program. The executable can then be run and 
observed using the design diagrams to dynamically 
monitor the run-time structure and behavior of the system. 

The powerful combination of the actor/OO paradigm 
as embodied in the UML and ROOM visual formalisms 
with the added flexibility of the C, C++ or Java 
programming languages, bundled together in a 
development tool such as RRT, provide much that is 
appropriate for biological modeling. 

 

 

Figure 1: UML Diagram for BioEntities 

 



   

To summarize, benefits of the CellAK that are of use 
in cell and other biological modeling that have been 
identified so far in this paper include: support for 
concurrency and interaction between entities, scalability 
to large systems, use of inheritance and containment to 
structure a system, ability to implement any type of 
behavior that can be implemented in C, C++ or Java, actor 
instantiation from a class, ease of using multiple instances 
of the same class, and subclassing to capture what entities 
have in common and how they differ. 

3 The Model 

3.1 Classes, Capsules and Containment 
The purpose of the small example system described 

here is to model and simulate metabolic pathways, 
especially the glycolytic pathway that takes place within 
the cytoplasm, and the TCA cycle that takes place within 
the mitochondrial matrix. It also includes a nucleus to 
allow for the modeling of genetic pathways in which 
changes in the extra cellular environment can effect 

changes in enzyme and other protein levels. The model is 
easily extensible, to allow for specialized types of cells. 

Figure 1 shows a set of candidate entities organized 
into an inheritance hierarchy, drawn as a UML class 
diagram. The lines with a triangle at one end are the 
standard UML notations for inheritance. Erythrocyte and 
NeuronCellBody are particular specializations of the more 
generic EukaryoticCell type. CellBilayer, 
MitochondrialInnerBilayer, and 
MitochondrialOuterBilayer are three of potentially many 
different subclasses of LipidBilayer. These three share 
certain characteristics but typically differ in the specific 
lipids that constitute them. The figure also shows that 
there are four specific Solution entities, each of which 
contains a mix of small molecules dissolved in the 
Solvent water. All entity classes are subclasses of 
BioEntity. 

Figure 2 shows a different hierarchy, that of 
containment. This UML class diagram shows that at the 
highest level, a EukaryoticCell is contained within an 
ExtraCellularSolution. The EukaryoticCell in turn 
contains a CellMembrane, Cytoplasm, and a Nucleus. 
This reductionist decomposition continues for several 
more levels. It includes the dual membrane structure of a 
Mitochondrion along with its inter-membrane space and 
solution and its internal matrix space and solution. Part of 
the inheritance hierarchy is also shown in these figures. 
Each Membrane contains a LipidBilayer, but the specific 
type of bilayer (CellBilayer, MitochondrialInnerBilayer, 
MitochondrialOuterBilayer) depends on which type of 
membrane (CellMembrane, 
MitochondrialInnerMembrane, 
MitochondrialOuterMembrane) it is contained within. 

3.2 Specifying 
Adjacency 

A model is 
constructed of 
capsules, which 
are instances of 
classes shown 
in Figure 1. 
Capsules are 
arranged in a 
containment 
hierarchy as 
shown in 
Figure 2. 
Capsules 
represent the 
agents in a 
CellAK 
simulation. 
Connectivity 
between capsules determines adjacency; i.e. how changes 

 
Figure 3: Eukaryotic Cell Capsule Structure

 

Figure 2: Containment Hierarchy 

 



   

in the state of one capsule affect another. Changes occur 
through the exchange of messages. 

In a EukaryoticCell, CellMembrane is adjacent to and 
interacts with Cytoplasm, but is not adjacent to and 
therefore cannot interact directly with Nucleus. 
Interactions between CellMembrane and Nucleus must 
occur through Cytoplasm. It is important to have a 
structural architecture that will place those things adjacent 
to each other that need to be adjacent, so they can be 
allowed to interact.  

Adjacency is represented using protocols. A protocol 
is a specific set of messages that can be exchanged 
between capsules to allow interaction. The Configuration 
protocol has two signals - ConfigSig and MRnaSig. When 
the simulation starts, the Chromosome within the Nucleus 
sends a ConfigSig message to the Cytoplasm, which will 
recursively pass this message to all of its contained 
capsules. When an active object such as an Enzyme 
receives the ConfigSig message, it determines its type and 
takes on the characteristics defined in the genome for that 
type. When a Solution such as Cytosol receives the 
ConfigSig message, it extracts the quantity of the various 
molecules that it contains, for example how many glucose 
and how many pyruvate molecules. In addition to being 
passed as messages through ports, configuration 
information may be also be passed in to a capsule as a 
parameter when it is created. This is how the entire 
Mitochondrion containment hierarchy is configured. In 
this approach, Nucleus is used for a purpose in the 
simulation that is similar to its actual role in a biological 
cell. The MRnaSig (messenger RNA signal) message can 
be used to reconfigure the system by creating new 
Enzyme types and instances as the simulation evolves in 
time. 

The Adjacency protocol allows configured capsules to 
exchange messages that will establish an adjacency 
relationship. Capsules representing active objects 
(Enzymes, PyruvateTransporter and other types of 
TransportProtein, LipidBilayer) that engage in chemical 
reactions by acting on small substrate molecules, will 
send SubstrateRequest messages. Capsules that contain 
small molecules (types of Solution such as Cytosol, 
ExtraCellularSolution, MitochondrialIntermembranesol, 
Matrixsol) will respond with SubstrateLevel messages. 

Figure 3 is a capsule structure diagram that shows 
EukaryoticCell and its three contained capsules with 
named ports and connector lines between these ports. The 
color of the port (black or white) indicates the relative 
direction (in or out) of message movement. 

Figure 3 represents a significantly simplified model; 
the final model includes all of the capsules shown in 
Figure 2. The full model is shown in Figure 4. A full 
description of Figure 4 is, however, beyond the scope of 
this paper. 

Defining the desired behavior of the system is 
achieved by specifying patterns of message exchange 
between capsules. 

In the sample model, the glycolytic pathway is 
implemented through the multiple enzymes within 
Cytoplasm, all acting concurrently on the same set of 
small molecules within Cytosol. The TCA metabolic 
pathway is similarly implemented by the concurrent 
actions of the multiple enzymes within Matrix acting on 
the small molecules of the Matrixsol. Movement of small 
molecules across membranes is implemented by the 
various lipid bilayers. For example, lipidBilayer within 
MitochondrialOuterMembrane transports pyruvate from 
the Cytosol to the MitochondrialIntermembranesol, and 
pyruvateTransporter within MitochondrialInnerMembrane 
transports pyruvate across this second membrane into the 
Matrixsol. 

3.3 Enzyme Behaviour 
Figure 5 shows the UML state diagram representing 

the behavior of an Enzyme active object. When first 
created, it makes the initialize transition. As part of this 
transition it executes a line code that sends a message out 
its adj port. When it subsequently receives a 
SubstrateLevel response message through the same adj 
port, it stores the SmallMolecule reference that is part of 
that message, creates a timer so that it can be invoked at a 
regular interval, and makes the transition to the Active 
state. 

The state diagrams for lipid bilayers and transport 
proteins are much the same, but include additional states 
because they need to connect to two small molecule 
containers, one inside and the other outside. 



   

 
Figure 5: Enzyme state machine 

 

3.4 Kinetics and Enzyme Reactions 
Enzyme reactions can take various forms. In this 

paper, we consider the simplest case, in which an enzyme 
irreversibly converts a single substrate molecule into a 
different product molecule. By irreversible is meant that 
the enzyme cannot also convert the product into the 
substrate. More complex reactions include combining two 
substrates into one resulting product, splitting a single 
substrate into two products, and making use of activators, 
inhibitors, and coenzymes. 

In the C++ code below, which implements irreversible 
Michaelis-Menten kinetics [15 p.148+], [4] sm->  is a 
reference to the SmallMolecule data structure that in this 
case is located in Cytosol, while gene->  refers to a 
specific gene in the Chromosome. All processing by 
active objects makes use of these two types of data, data 
that they know about because of the two types of message 
exchange that occur during initial configuration. 
1. Irreversible, 1 Substrate, 1 Product, 0 Activator, 0 Inhibitor, 0 
Coenzyme 
2. case Irr_Sb1_Pr1_Ac0_In0_Co0: 

3.  s = sm-

>molecule[gene->substrateId[0]].get(); 
4.  nTimes = enzymeLevel * ((gene->substrateV * s) / (gene-
>substrateK + s)); 
5.  sm->molecule[gene->substrateId[0]].dec( nTimes ); 
6.  sm->molecule[gene->productId[0]].inc( nTimes ); 
7.  break; 
 

The gene in CellAK is encoded as a set of features 
that includes protein kinetic constants. For example, in the 
code above, gene->substrateV refers to V the upper 
limit of the rate of reaction, and gene->substrateK 
is the Michaelis constant Km that gives the concentration 
of the substrate molecule s at which the reaction will 
proceed at one-half of its maximum velocity. 

The Gepasi software package [4] performs the same 
processing using ODEs. Gepasi implements irreversible 
Michaelis-Menton kinetics, which is implemented on line 
4 of the code above in our model.  

3.5 Validation 
The main focus in CellAK has been on a qualitative 

model, but this approach also provides quantitative results 
which very closely approximate those computed using 
Gepasi, a tool that does claim to produce accurate 
quantitative results. In addition to the practical value of 
having CellAK generate accurate results, these also help 
to validate its design and implementation. 

A simplified Glycolytic Pathway model was run in 
parallel using CellAK and Gepasi. The model includes the 
ten standard enzymes of glycolysis, and the eleven 
standard substrate and product metabolites ([15]. 308). 
All enzymes are implemented as irreversible, and there 
are no activators, inhibitors or coenzymes. Nine of the 
enzyme reactions convert one substrate into one product. 
The sole exception is the fourth enzyme reaction 
(Aldolase) that converts one substrate (Fructose-1,6-
biphosphate) into two products 
(DihydroxyacetonePhosphate and Glyceraldehyde-3-

 

Figure 4: The complete structure of the sample 
model, with all capsules, ports, and connectors. 
This is an enhancement of Figure 3, with additional 
details added. 



   

phosphate). The units of time in both models are seconds, 
but more realistically should be thought of simply as 
discrete timesteps. 

The results of this experiment are shown in Figure 6. 
Initially there are 1000000 units of each metabolite. Over 
the course of the simulation, during 1000 timesteps, for 
ten out of the eleven metabolites, the difference between 
the CellAK and Gepasi results is never greater than 
0.005%. 

There is continuously more Glucose in the CellAK 
model with the passage of time than in the Gepasi 
version. In CellAK the cell bilayer constantly replenishes 
the amount of Glucose in the cytosol by transporting it at 
a low rate from the extra cellular solution. This low rate, 
as currently implemented, is not sufficient to keep the 
Glucose quantitty constant in the cytosol. In both the 
Gepasi and CellAK results, the Glucose level decreases 
from 1000000 to around 900000 (900160 Gepasi, 903893 
CellAK) after 1000 seconds. 

4 Conclusions 
This paper has described a modeling approach and 

tool, CellAK, developed using principles from agent-
based modeling that is suitable for application to 
sophisticated cell modeling. We have demonstrated the 
validation of the model against Gepasi. The visual nature 
of the tool is considerably simpler to understand when 
compared to conventional differential equation based 
models and, being container based, can more effectively 
support system level models proposed by Tomita. We 
believe that this paper clearly confirms the value of agent-

based modeling reported in [8]. Further, we have reused 
several of the classes and protocols in models of neurons 
with considerable success; research that is reported 
elsewhere.   

Clearly other modeling work is possible. Other active 
objects in CellAK (polymers) are also composed of 
repeating units of monomers. Becker [15 p.30] states that 
there are three major types of polymers in a cell. This 
suggests a general principle. Active objects have an 
influence on other active objects in CellAK by having an 
effect on their constituent monomers. This enhancement 
should now be implemented for enzymes, transport 
proteins, and other proteins in CellAK. However, proteins 
are considerably more complex than lipid bilayers. The 
amino acids that constitute a protein are coded for in the 
DNA, the order of amino acids is of critical importance, 
and the string of amino acids folds into a three-
dimensional shape. The behavior of a protein is therefore 
an extremely complex function of its fine-grained 
structure. A more tractable problem is found in the 
interactions of proteins with each other, such as when one 
protein regulates (activates or inactivates) another protein 
through the process of phosphorylation [15 p.158], which 
involves a relatively simple reversible structural 
modification (a change in the fine-grained structure of 
another protein). The approach described in this paper 
could be applied relatively easily to the modeling of 
networks of such interacting proteins. 
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