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A Systematic Search Strategy for Product Configuration 

Helen Xie1, Philip Henderson, Joseph Neelamkavil and Jingxin Li  

Integrated Manufacturing Technologies Institute  

National Research Council of Canada 

800 Collip Circle, London, Ontario, Canada N6G 4X8 

Abstract.  Constraint satisfaction problem (CSP) paradigm has proven highly 

successful in product configuration, particularly for build-to-order products, by 

assigning component types to all components without violating any constraints. 

For engineer-to-order products, however, product configuration requires 

assigning design parameters to each component as well.  Hence, it often 

involves numeric variables, n-ary constraints, and constraints over variables 

that depend on other variables.  Thus, an efficient search strategy is needed to 

address these issues. In this paper, an extension to the CSP, called Dependent 

CSP, is proposed to accommodate the complex engineer-to-order product 

configuration and the search strategy. In the Dependent CSP, variables are 

categorized as independent variables and dependent variables so that, search 

space can be reduced by eliminating dependent variables. Backjumping search 

strategy is employed to search for a solution as effective as possible. An 

updating mechanism is designed to avoid repetitive and unnecessary variable 

updating and constraint evaluation. Several variable ordering heuristics are 

assessed and the most effective ones are chosen for solution implementation.  

By applying these strategies, we can achieve a very efficient search algorithm 

for product configuration.  The algorithm has been applied in a product 

configuration problem – an elevator system design – and a configuration 

solution can be obtained in a matter of seconds.   

Keywords: Constraint satisfaction, product configuration, numeric variables,   

n-ary constraints, dependent variables, backjumping, variable ordering 

1. Introduction 

The product configuration is an enabling technology in achieving mass 

customization to meet the challenges of global competition and customer satisfaction. 

It is intended to aid manufacturing companies to configure customized products 

quickly and efficiently by automating the configuration process as much as possible. 

The constraint satisfaction problem (CSP) paradigm has proven highly successful for 

product configuration.  It provides several advantages [11] in terms of problem 

representation, algorithms, and result evaluation.  First, the domain knowledge of 

product configuration can be represented in a declarative form, which makes the 

configuration problem easy to define and maintain.  Second, the search strategies are 
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generic and domain independent.  By experimenting with different search strategies, 

efficient search algorithms can be identified for a certain type of product 

configuration problem.  Third, given an existing configuration, its accuracy can easily 

be verified by checking the consistency of constraints.  Finally, CSP algorithms easily 

allow the generation of multiple alternative solutions for preference and optimization 

purposes.   

A typical constraint satisfaction problem (CSP) is defined by a set of variables, X = 

{x1,…, xn}, and a set of constraints, C, over these variables.  An associated domain, 

Di, contains possible values for xi.  A constraint c (xi,,…, xj) ∈ C specifies a subset of 

the Cartesian product Di × … × Dj indicating the variable assignments that are 

compatible with each other.  A solution to a CSP is a complete assignment of values 

to the variables such that all constraints are simultaneously satisfied [7].  In a product 

configuration framework, component types are represented as variables with discrete 

and finite domains, and compatibilities of various components to form a valid 

configuration are represented as constraints [9].  For example, an elevator door is 

available in four models: SSSO, 2SSO, SSCO, and 2SCO, and an elevator platform 

can be chosen from three models: 2.5B, 4B, and 6B.  The constraints for compatible 

models are represented as tuples: {SSSO, 2.5B}, {2SSO, 4B}, {SSCO, 4B}, {2SCO, 

6B}.  A valid configuration is constructed by choosing a door model and a platform 

model such that the combination appears in one of the tuples.  

For engineer-to-order products, however, product configuration also requires 

assigning design parameters for each component.  While the design parameters, 

including but not limited to component types and component quantities, are 

represented as variables, design constraints restricting design parameter assignments 

can be represented as constraints.  Since constraints over design parameters may take 

a wide variety of formats, modeling and solving constraints for engineer-to-order 

products presents several challenges: 

1. Variables may be defined with continuous and numeric domains. 

2. Constraints may be n-ary, meaning more than two variables may appear in a 

constraint. 

3. Constraints may be represented as mathematical expressions or computable 

procedures. 

4. A constraint may be defined over variables whose existence depends on the values 

chosen for other variables.  This type of constraint is called activity constraint [8] 

or conditional constraint [5]. 

5. More generally, a constraint may be defined over variables whose values cannot be 

independently assigned, because those variables have dependent relations with 

other variables outside the constraint.  This type of constraint is called dependent 

constraint. 

To address the issue of the conditional constraint, several constraint models have 

been proposed to extend the original configuration framework, including Dynamic 

CSP [8], Generative CSP [4][12], Composite CSP [10], and Mixed and Conditional 

CSP [5].  While the Dynamic CSP, Generative CSP, and Composite CSP models 

formulate the conditional constraint in such ways that effective search algorithms can 

be employed, the Conditional CSP model reduce the conditional constraints to a set of 

standard CSPs by analyzing dependencies between the conditional constraints and 

applying the conditional constraints in order.   



The issues on n-ary constraints over numeric variables or mixed variables (both 

discrete and numeric variables) are also addressed in Mixed and Conditional CSP [5]. 

In order to achieve arc-consistency, the n-ary constraint can be decomposed into an 

equivalent network of ternary constraints.  When all but two variables of the n-ary 

constraint have been instantiated, a binary refine operator can be applied.   

In an n-ary dependent constraint, some variables (called dependent variables) may 

not be independently assigned values from their domains, as they depend on other 

variables through dependent relations.  The dependent relations are often represented 

by mathematical expressions or computable procedures.  In the dependent relations, 

some variables can be independently assigned values from their domains.  Although 

these variables may not have appeared in the dependent constraint, they are 

considered as independent variables in the dependent constraint, since these variables 

have the potential to make the dependent constraint satisfied.  In the dependent 

constraint, a constraint check cannot be done immediately when an independent 

variable is assigned a value, as its associated dependent variables have to be updated 

as well.  Unlike variables of the conditional constraint which have only two values 

(existence or non-existence) to choose from, the dependent variables may have 

numeric domains.  Converting the n-ary dependent constraint with numeric variables 

into a set of typical constraints with tuples may result in exponential increase in 

parameters and constraints [1].  Hence, a generic constraint model and efficient search 

strategy are needed for the n-ary dependent constraint. 

The main contribution of this paper is to propose a generic constraint model and an 

efficient search strategy for product configuration with n-ary dependent constraints 

over numeric variables. Since a dependent constraint can be ultimately represented by 

a set of independent variables through dependent relations, and dependent variable 

cannot be independently assigned a value, the search space could be reduced by 

eliminating dependent variables.  As dependent relations among variables are 

represented by mathematical expressions and computable procedures, their formats 

only become known later at product constraint modeling time.  In order to make a 

search algorithm as generic as possible, a systematic search strategy is employed.  

Specifically, backjumping algorithm is chosen because of its success in avoiding 

thrashing (repeated failure due to the same reason) which is often the leading factor in 

search efficiency.  During a search process, a consistency check is required, whenever 

an independent variable is assigned a new value.  Since a constraint is linked to 

independent variables through dependent variables, the dependent variables are 

frequently updated. Thus, the updating of dependent variables becomes a bottleneck 

in search efficiency.  An efficient updating mechanism is designed to avoid 

unnecessary updating.   Moreover, several variable ordering heuristics were assessed 

and implemented.    By applying these strategies, we can achieve a very efficient 

search algorithm for product configuration.  The algorithm has been applied in a 

product configuration problem – an elevator system design, with excellent results:  the 

search can be done in a matter of seconds.   

The remainder of the paper is organized as follows.  Section 2 defines the 

constraint model applicable to n-ary dependent constraints. In Section 3, we present a 

backjumping search algorithm for product configuration, provide a mechanism for 

updating dependent variables and constraints, and discuss variable ordering heuristics.  



A case study for configuring an elevator system is presented in section 4.   Finally, 

conclusions are given in section 5. 

2. A Constraint Model for Product Configuration 

As a search algorithm should be generic to any product configuration, a constraint 

model is necessary for defining product configuration.  Here, product configuration 

can be represented by a Dependent Constraint Satisfaction Problem as follows: 

Definition. A Dependent Constraint Satisfaction Problem is defined as <X, D, R, C>, 

where 

− X ={x1, x2, …, xn} is a finite set of variables, 

− Each xi ∈Xin can take its value from a finite domain Di, where Di∈D, Xin⊆X is a 

set of independent variables, 

− Each variable xj∈Xde depends on its dependent relation rj∈R to its ancestors Xa⊆ 

X, Xde⊆X is a set of dependent variables. X=(Xin ∪ Xde), and  (Xin ∩ Xde)=0.  

− A set of constraints C restricts the combination of values that variables can take.   

− A solution to a Dependent CSP is an assignment of a value from its domain to 

every variable from X, in such a way that every constraint from C and every 

dependent relation from R are satisfied.   

Variables are modifiable during a search process to satisfy all the constraints, so 

that a solution can be found.  According to the way variables can be modified, they 

can be classified as an independent variable (IV) or a dependent variable (DV).  The 

independent variable is a variable that may be directly modified by a search 

algorithm.  Its value can independently be assigned within its domain.  The dependent 

variable depends on a dependent relation.  It can only be derived from existing 

variables.  Its value ultimately depends on independent variables and cannot be 

independently modified. An ancestor of a dependent variable is a variable whose 

value determines (at least in part) the value of the dependent variable. Direct 

ancestors can be any combination of IVs and DVs, but ultimately a dependent 

variable is defined by IVs.  There are advantages to separating dependent variables 

from independent variables.  First, only independent variables define the search space, 

so the number of possible combinations is dramatically reduced.  Second, when a 

dependent variable is used by multiple constraints, it needs to be computed only once.  

These characteristics help to improve the efficiency of the search algorithm. 

Variables can have numeric or non-numeric domains.  Examples of numeric 

variables are choices relating to dimension or weight, while non-numeric variables 

can be the model of a part.  Numeric variables are given a range of possible numeric 

values specified by a minimum, maximum, and an interval to be used from one value 

to the next, while non-numeric variables each have a list of possible values.  The 

sequence of the values in their domain will determine the order in which values are 

tried in a search process.   

Dependent relations are represented by mathematical expression or computable 

procedures, such as formulas, tables, etc.  They specify design relations among 

independent variables and dependent variables or among dependent variables.  An 

example of a dependent relation is shown as follows: Counterweight Plate Weight = 



0.2816T(D(BG-2)-3.5(D-5)-6(D-7)), where BG is the Distance Counterweight 

Between Guiderails (an independent variable), D is the Counterweight Plate Depth 

(an independent variable),  T is the Counterweight Plate Thickness (a constant), and 

Counterweight Plate Weight is a dependent variable . 

Constraints specify the restrictions that must be satisfied for a solution.  The 

restrictions may represent a logical requirement, physical requirement, compatibility 

among parts, safety regulations, or any other design requirement that may be required.  

A constraint may be extensionally represented as tuples, or intensionally described by 

mathematical expressions or computable procedures that indicate a valid or invalid 

assignment for consistency check.  The difference between constraints and dependent 

relations is that constraints specify a limit, while dependent relations result in a value.  

For example, a constraint can be stated as follows: the Platform Width must be at least 

60 inches.  A constraint may apply to any number of variables, including any 

combination of IVs and DVs.  However, since dependent variables are 

deterministically defined by independent variables, the constraint ultimately depends 

solely on independent variables.   The number of independent variables that affect a 

constraint is called the constraint’s arity.  Sometimes, a independent variable may not 

appear in a constraint explicitly, since it may affect the constraint through dependent 

variables.  Nevertheless, the relevant independent variables can still be identified by 

searching the ancestors of a constraint’s dependent variables.  The relationship 

between constraints and independent variables is many-to-many, meaning that a 

constraint may depend on multiple independent variables, and an independent 

variable may affect multiple constraints.   

3. A Search Strategy 

Once product configuration has been formulated as a constraint satisfaction problem, 

a solution can be found using search algorithms.  Since they are represented by 

mathematical expressions or computable procedures, dependent constraints and their 

corresponding dependent relations can take a wide variety of formats. Hence, they are 

not known during algorithm design time. To provide a generic search algorithm for 

solving product configuration problems, we use systematic search strategies for 

product configuration. 

A systematic search strategy incrementally extends a partial solution towards a 

complete solution by repeatedly choosing a value for another variable, consistent with 

the values in the current partial solution [2].  Since it traverses the search space 

systematically, the advantage is that a solution, if one exists, can eventually be found.  

Also, the algorithm is general and applicable to any configuration design problems.  

As previously described, dependent variables can be eliminated from search space.  

Thus, only independent variables are considered as variables in search algorithms. 

Backtracking is a primary algorithm in systematic search. It has two phases: a 

forward phase in which the next variable is selected and the current partial solution is 

extended by assigning a consistent value, if one exists for the next variable; and a 

backward phase in which, when no consistent solution exists for the current variable, 

attention returns to the previous variable assigned [3]. Backtracking suffers the 



drawback of thrashing, i.e. repeated failure due to the same reason.  The efficiency of 

backtracking algorithm was improved by backjumping, a proper updating mechanism, 

and variable ordering in configuration design. 

 3.1 Backjumping 

Backjumping improves on backtracking by analyzing the reasons for a dead-end and 

jumping back to the appropriate variable.  In backtracking, a dead-end is encountered 

when a consistent value cannot be found for the next variable (i.e. the current partial 

solution cannot be extended).  Instead of just going back to the preceding variable in 

the ordering, the backjumping algorithm tries to identify the source of failure and 

prunes a large portion of search space without missing any potential solutions.  To 

help determine an appropriate backtrack point, we discuss the following three 

situations: 

1. A dead-end variable breaks one unary constraint.  The unary constraint cannot be 

affected by other variables, so if this is the case, this constraint shall never be 

satisfied and the CSP is impossible to solve. 

2. A dead-end variable breaks one constraint with n-ary variables.  The broken 

constraint has one or more variables that can affect it (excluding the dead-end 

variable).  Although any of these variables could be modified, the algorithm should 

not skip any possible solutions.  Thus, the algorithm should jump back to the 

closest previous variable for this constraint.  If the algorithm moves farther back, it 

may skip a potential solution, and any jumps that do not go back beyond this point 

will be futile since this constraint will fail again. 

3. A dead-end variable breaks more than one constraint with n-ary variables.  In this 

case, the values of the variable can not become valid unless all broken constraints 

are affected.  Thus, jumping back to the closest previous variable among all broken 

constraints is not adequate, since it does not affect the constraints whose variables 

appear before that variable.  In order to ensure that all constraints are affected, the 

algorithm should jump back to the farthest variable, called the cutoff variable, 

among the closest variables of all broken constraints. The algorithm cannot jump 

back farther without facing the risk of missing potential solutions.  After jumping 

back, still, if none of the values are compatible with at least one constraint for the 

cutoff variable, then the algorithm should jump back to the closest variable among 

any connected constraints for the new current/dead-end variable. 

3.2 Updating mechanism for consistency checks 

While choosing appropriate backtrack points could potentially prune a large portion 

of search space, determining the timing for constraint consistency checks can also 

improve the efficiency of the search algorithm.  It is necessary to have an updating 

mechanism that identifies which constraints and dependent variables have been 

affected by the change of an independent variable’s value, and updates their status 

accordingly.  The efficiency of the updating mechanism has a major impact on the 



overall efficiency of the search algorithm, since updating is performed frequently 

(every time an IV’s value is changed).   

However, enabling each dependent variable of a constraint to re-compute itself 

does not guarantee the values will be properly updated, as the constraint and 

dependent variables need to be updated after their ancestors.  In our previous 

approach [13], a list of dependent variables is stored for each variable (either 

independent variable or dependent variable) as its direct descendants.  Whenever an 

independent variable is modified, it calls the update procedures of its direct 

descendants, which in turn call the update procedures of their direct descendants, and 

so on.  In this way, every dependent variable will be properly updated and correctness 

of the constraint’s status is guaranteed.  However, this approach may still update a 

dependent variable more than once.  For example, suppose we have (A -> B, C) and 

(C -> B). An arrow indicates dependency: (A -> B) means that B is a direct 

descendant of A (or, equivalently, A is a direct ancestor of B).  Once A is updated 

properly, and B’s update procedure is called and followed by C’s update procedure 

since B and C are A’s direct descendants. However, B is C’s direct descendant as 

well, so B’s update procedure shall be called once more, right after C’s update 

procedure.  Consequently, B’s update procedure was called more than once, because 

A does not know which of its direct descendants to be updated first. 
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Fig. 1. A directed acyclic graph of independent variables, dependent variables and constraints 

In our current approach, the dependencies among variables and constraints are 

considered as arcs in a directed graph, where variables and constraints are nodes and 

there is an arc from every variable to each one of its descendants (Fig. 1). In the 

directed graph, independent variables do not have any ancestors, and constraints do 

not have any descendants.  Dependent variables can only be derived from independent 

variables or other dependent variables that in turn are eventually derived from 

independent variables. This directed graph can be shown to be acyclic, implying that a 

topological ordering exists.  A topological ordering of the directed acyclic graph 

provides an updating order which guarantees that each variable and constraint’s status 



are correct and need to be computed only once.  Multiple topological orderings are 

valid, but the recommended ordering is formed by minimizing the value given to 

constraints and dependent variables, so that constraints can be evaluated as early as 

possible.   

As previously described, constraints are often indirectly linked to independent 

variables through dependent variables in configuration design.  Also a dependent 

variable may depend on one or more independent variables.  Thus, if any of the 

independent variable ancestors for a dependent variable is not instantiated, the 

dependent variable cannot be used as an authentic source for evaluating associated 

constraints.  The evaluation of a constraint has to wait until the last independent 

variable ancestor is instantiated.  Using the criteria for determining proper timing for 

consistency checks, unnecessary repeated updating can be avoided.   

3.3 Variable Ordering 

The performance of the backjumping algorithm can also be improved by choosing the 

order of variable instantiation [6].  In the algorithm, variable ordering is used as a pre-

processing technique.  A fixed order is determined by heuristic approaches prior to 

starting of the search.    Several heuristics have been analyzed for selecting variable 

order.   One consideration is the variable’s degree, a number of variables that are 

connected with it. The maximum degree variable is instantiated first. If variables are 

tied in the first heuristic, then a variable with the fewest domain values would be 

chosen as a secondary heuristic.  However, the success of these heuristics is not 

independent of the specific product configuration problem; hence, the search 

algorithm may have to try several orderings before finding a good variable ordering.   

4. A Case Study and Experimental Results 

To exam the efficiency of the constraint model and search algorithm described above, 

we have tested a configuration design problem—configuring elevator systems [14].  

The configuration process begins with a list of customer requirements, such as 

elevator car capacity and speed, and building dimensions.  To configure an elevator 

system, one must assign a set of variables that satisfies both customer requirements 

and design constraints.  In product configuration problems, not all variables are 

compatible, and certain combinations may not meet functional or safety regulations.  

The algorithm has to modify variables until it achieves a valid configuration.   

In order for the search algorithm to find a valid solution for the elevator design, it 

is necessary to generate associated product definitions in the constraint model.  There 

are 241 variables in the elevator system.  Among these, there are 32 independent 

variables (such as platform model and counterweight buffer quantity), and 184 

dependent variables (such as counterweight quantity and hoist cable quantity), and 25 

input variables (such as car capacity and car speed).  Input variables capture customer 

requirements and are considered as fixed values upon entering the system.  There are 

also 50 constraints that establish criteria for functional and safety regulations, which 



guide the search algorithm to find a valid solution.  In addition to variables and 

constraints, there are also dependent relations, such as mathematical expression or 

tables, between dependent variables and independent variables.  These relations 

define how the dependent variables are derived from independent variables.     

The backjumping search algorithm was implemented in Java using IBM VisualAge 

for Java 4.0.  It solved almost all elevator configuration problems that we tried in less 

than 15 seconds.  The only problematic case is when car capacity and car speed inputs 

are set to their maximum possible values.  For this scenario, the best variable ordering 

(we could find) took 50 seconds, whereas the automated variable ordering never 

completed the search.  A series of tests was performed on an Intel Pentium 4 CPU, 

1.8GHz, and 1G RAM running on Windows 2000.  The results below show that the 

algorithm works quite well with an automated variable ordering.  Note that these 

results are the slowest test cases found for the given car capacity and car speed.  For 

instance, other test cases with car capacity at 4000lbs and car speed set to 400 feet per 

minute found solutions in 10-15 seconds. 

Table 1.  Backjumping results (with automated variable ordering) 

Car Speed (feet per minute) Worst-case time 

found (seconds) 200 250 300 350 400 

2000 1.5 ---- ---- ---- 3.4 

3000 ---- 1.5 ---- 4.5 6.2 

Car 

Capacity 

(pounds) 4000 2.4 ---- 2.5 ---- Forever 

 

A web-based application prototype system was implemented using this algorithm.    

The system allows the customer to enter requirements, and displays the final 

configuration results back to the customer through the Web.  The Web application 

was deployed on IBM WebSphere Application Server.   

5. Conclusions 

Market trends that affect today’s competitive environment are changing dramatically. 

Mass production of identical products - the business model for industries in the past - 

is no longer viable for many sectors. Customized products offer great market potential 

to manufacturers in the current climate of global competition and improved customer 

satisfaction.  The complexity of products brings along new demands for configuration 

technology to cope with search efficiency.  However, commercially available 

configuration systems only support build-to-order type product configuration in which 

constraints are represented by tuples.  In this paper, an extension of the CSP paradigm 

was presented to cover dependent constraints with mathematical expressions in 

product configuration.  The extension supports n-ary dependent constraints and 

variables with both discrete and numeric domains.  Dependent variables are separated 

from independent variables to reduce search space.  The updating mechanism 

proposed for dependent variables and constraints ensures correctness while avoiding 

repeated computations. The search algorithm is based on backjumping, a systematic 



search strategy.  Specific backjumping situations were discussed to cover many-to-

many relations between variables and constraints.  Several heuristics of variable 

ordering were also applied for the backjumping search algorithm.  The implemented 

algorithm is capable of solving almost all elevator configuration problems within 15 

seconds based on an elevator case study.  The test results show that the algorithm 

works well with a good (automated) variable ordering heuristic.  This approach can be 

easily applied to a wide variety of product configuration problems. 
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