
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 17th International Conference on Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems Manufacturing (IEA): 01
January 2004, Ottawa, Canada, pp. 718-727, 2004-01-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=066cbc1f-9b35-46f0-97fa-f93ffb0c8f3d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=066cbc1f-9b35-46f0-97fa-f93ffb0c8f3d

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Systematic search strategy for product configuration
Xie, H.; Henderson, P.; Neelamkavil, J.; Li, J.

http://irc.nrc-cnrc.gc.ca

A S y s t e m a t i c s e a r c h s t r a t e g y f o r p r o d u c t
c o n f i g u r a t i o n

 I M T I - X P - 2 1 6

X i e , H . ; H e n d e r s o n , P . ; N e e l a n k a v i l , J . ; L i , J .

A version of this document is published in / Une version de ce document se trouve dans:
Proceedings of the 17

th
 International Conference on Industrial & Engineering

Applications of Artificial Intelligence & Expert Systems Manufacturing (IEA), Ottawa,
Ontario, Jan. 1, 2004, pp. 718-727

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements :

http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://irc.nrc-cnrc.gc.ca/
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

A Systematic Search Strategy for Product Configuration

Helen Xie1, Philip Henderson, Joseph Neelamkavil and Jingxin Li

Integrated Manufacturing Technologies Institute

National Research Council of Canada

800 Collip Circle, London, Ontario, Canada N6G 4X8

Abstract. Constraint satisfaction problem (CSP) paradigm has proven highly

successful in product configuration, particularly for build-to-order products, by

assigning component types to all components without violating any constraints.

For engineer-to-order products, however, product configuration requires

assigning design parameters to each component as well. Hence, it often

involves numeric variables, n-ary constraints, and constraints over variables

that depend on other variables. Thus, an efficient search strategy is needed to

address these issues. In this paper, an extension to the CSP, called Dependent

CSP, is proposed to accommodate the complex engineer-to-order product

configuration and the search strategy. In the Dependent CSP, variables are

categorized as independent variables and dependent variables so that, search

space can be reduced by eliminating dependent variables. Backjumping search

strategy is employed to search for a solution as effective as possible. An

updating mechanism is designed to avoid repetitive and unnecessary variable

updating and constraint evaluation. Several variable ordering heuristics are

assessed and the most effective ones are chosen for solution implementation.

By applying these strategies, we can achieve a very efficient search algorithm

for product configuration. The algorithm has been applied in a product

configuration problem – an elevator system design – and a configuration

solution can be obtained in a matter of seconds.

Keywords: Constraint satisfaction, product configuration, numeric variables,

n-ary constraints, dependent variables, backjumping, variable ordering

1. Introduction

The product configuration is an enabling technology in achieving mass

customization to meet the challenges of global competition and customer satisfaction.

It is intended to aid manufacturing companies to configure customized products

quickly and efficiently by automating the configuration process as much as possible.

The constraint satisfaction problem (CSP) paradigm has proven highly successful for

product configuration. It provides several advantages [11] in terms of problem

representation, algorithms, and result evaluation. First, the domain knowledge of

product configuration can be represented in a declarative form, which makes the

configuration problem easy to define and maintain. Second, the search strategies are

1 Corresponding author. E-mail address: helen.xie@nrc.gc.ca

generic and domain independent. By experimenting with different search strategies,

efficient search algorithms can be identified for a certain type of product

configuration problem. Third, given an existing configuration, its accuracy can easily

be verified by checking the consistency of constraints. Finally, CSP algorithms easily

allow the generation of multiple alternative solutions for preference and optimization

purposes.

A typical constraint satisfaction problem (CSP) is defined by a set of variables, X =

{x1,…, xn}, and a set of constraints, C, over these variables. An associated domain,

Di, contains possible values for xi. A constraint c (xi,,…, xj) ∈ C specifies a subset of

the Cartesian product Di × … × Dj indicating the variable assignments that are

compatible with each other. A solution to a CSP is a complete assignment of values

to the variables such that all constraints are simultaneously satisfied [7]. In a product

configuration framework, component types are represented as variables with discrete

and finite domains, and compatibilities of various components to form a valid

configuration are represented as constraints [9]. For example, an elevator door is

available in four models: SSSO, 2SSO, SSCO, and 2SCO, and an elevator platform

can be chosen from three models: 2.5B, 4B, and 6B. The constraints for compatible

models are represented as tuples: {SSSO, 2.5B}, {2SSO, 4B}, {SSCO, 4B}, {2SCO,

6B}. A valid configuration is constructed by choosing a door model and a platform

model such that the combination appears in one of the tuples.

For engineer-to-order products, however, product configuration also requires

assigning design parameters for each component. While the design parameters,

including but not limited to component types and component quantities, are

represented as variables, design constraints restricting design parameter assignments

can be represented as constraints. Since constraints over design parameters may take

a wide variety of formats, modeling and solving constraints for engineer-to-order

products presents several challenges:

1. Variables may be defined with continuous and numeric domains.

2. Constraints may be n-ary, meaning more than two variables may appear in a

constraint.

3. Constraints may be represented as mathematical expressions or computable

procedures.

4. A constraint may be defined over variables whose existence depends on the values

chosen for other variables. This type of constraint is called activity constraint [8]

or conditional constraint [5].

5. More generally, a constraint may be defined over variables whose values cannot be

independently assigned, because those variables have dependent relations with

other variables outside the constraint. This type of constraint is called dependent

constraint.

To address the issue of the conditional constraint, several constraint models have

been proposed to extend the original configuration framework, including Dynamic

CSP [8], Generative CSP [4][12], Composite CSP [10], and Mixed and Conditional

CSP [5]. While the Dynamic CSP, Generative CSP, and Composite CSP models

formulate the conditional constraint in such ways that effective search algorithms can

be employed, the Conditional CSP model reduce the conditional constraints to a set of

standard CSPs by analyzing dependencies between the conditional constraints and

applying the conditional constraints in order.

The issues on n-ary constraints over numeric variables or mixed variables (both

discrete and numeric variables) are also addressed in Mixed and Conditional CSP [5].

In order to achieve arc-consistency, the n-ary constraint can be decomposed into an

equivalent network of ternary constraints. When all but two variables of the n-ary

constraint have been instantiated, a binary refine operator can be applied.

In an n-ary dependent constraint, some variables (called dependent variables) may

not be independently assigned values from their domains, as they depend on other

variables through dependent relations. The dependent relations are often represented

by mathematical expressions or computable procedures. In the dependent relations,

some variables can be independently assigned values from their domains. Although

these variables may not have appeared in the dependent constraint, they are

considered as independent variables in the dependent constraint, since these variables

have the potential to make the dependent constraint satisfied. In the dependent

constraint, a constraint check cannot be done immediately when an independent

variable is assigned a value, as its associated dependent variables have to be updated

as well. Unlike variables of the conditional constraint which have only two values

(existence or non-existence) to choose from, the dependent variables may have

numeric domains. Converting the n-ary dependent constraint with numeric variables

into a set of typical constraints with tuples may result in exponential increase in

parameters and constraints [1]. Hence, a generic constraint model and efficient search

strategy are needed for the n-ary dependent constraint.

The main contribution of this paper is to propose a generic constraint model and an

efficient search strategy for product configuration with n-ary dependent constraints

over numeric variables. Since a dependent constraint can be ultimately represented by

a set of independent variables through dependent relations, and dependent variable

cannot be independently assigned a value, the search space could be reduced by

eliminating dependent variables. As dependent relations among variables are

represented by mathematical expressions and computable procedures, their formats

only become known later at product constraint modeling time. In order to make a

search algorithm as generic as possible, a systematic search strategy is employed.

Specifically, backjumping algorithm is chosen because of its success in avoiding

thrashing (repeated failure due to the same reason) which is often the leading factor in

search efficiency. During a search process, a consistency check is required, whenever

an independent variable is assigned a new value. Since a constraint is linked to

independent variables through dependent variables, the dependent variables are

frequently updated. Thus, the updating of dependent variables becomes a bottleneck

in search efficiency. An efficient updating mechanism is designed to avoid

unnecessary updating. Moreover, several variable ordering heuristics were assessed

and implemented. By applying these strategies, we can achieve a very efficient

search algorithm for product configuration. The algorithm has been applied in a

product configuration problem – an elevator system design, with excellent results: the

search can be done in a matter of seconds.

The remainder of the paper is organized as follows. Section 2 defines the

constraint model applicable to n-ary dependent constraints. In Section 3, we present a

backjumping search algorithm for product configuration, provide a mechanism for

updating dependent variables and constraints, and discuss variable ordering heuristics.

A case study for configuring an elevator system is presented in section 4. Finally,

conclusions are given in section 5.

2. A Constraint Model for Product Configuration

As a search algorithm should be generic to any product configuration, a constraint

model is necessary for defining product configuration. Here, product configuration

can be represented by a Dependent Constraint Satisfaction Problem as follows:

Definition. A Dependent Constraint Satisfaction Problem is defined as <X, D, R, C>,

where

− X ={x1, x2, …, xn} is a finite set of variables,

− Each xi ∈Xin can take its value from a finite domain Di, where Di∈D, Xin⊆X is a

set of independent variables,

− Each variable xj∈Xde depends on its dependent relation rj∈R to its ancestors Xa⊆

X, Xde⊆X is a set of dependent variables. X=(Xin ∪ Xde), and (Xin ∩ Xde)=0.

− A set of constraints C restricts the combination of values that variables can take.

− A solution to a Dependent CSP is an assignment of a value from its domain to

every variable from X, in such a way that every constraint from C and every

dependent relation from R are satisfied.

Variables are modifiable during a search process to satisfy all the constraints, so

that a solution can be found. According to the way variables can be modified, they

can be classified as an independent variable (IV) or a dependent variable (DV). The

independent variable is a variable that may be directly modified by a search

algorithm. Its value can independently be assigned within its domain. The dependent

variable depends on a dependent relation. It can only be derived from existing

variables. Its value ultimately depends on independent variables and cannot be

independently modified. An ancestor of a dependent variable is a variable whose

value determines (at least in part) the value of the dependent variable. Direct

ancestors can be any combination of IVs and DVs, but ultimately a dependent

variable is defined by IVs. There are advantages to separating dependent variables

from independent variables. First, only independent variables define the search space,

so the number of possible combinations is dramatically reduced. Second, when a

dependent variable is used by multiple constraints, it needs to be computed only once.

These characteristics help to improve the efficiency of the search algorithm.

Variables can have numeric or non-numeric domains. Examples of numeric

variables are choices relating to dimension or weight, while non-numeric variables

can be the model of a part. Numeric variables are given a range of possible numeric

values specified by a minimum, maximum, and an interval to be used from one value

to the next, while non-numeric variables each have a list of possible values. The

sequence of the values in their domain will determine the order in which values are

tried in a search process.

Dependent relations are represented by mathematical expression or computable

procedures, such as formulas, tables, etc. They specify design relations among

independent variables and dependent variables or among dependent variables. An

example of a dependent relation is shown as follows: Counterweight Plate Weight =

0.2816T(D(BG-2)-3.5(D-5)-6(D-7)), where BG is the Distance Counterweight

Between Guiderails (an independent variable), D is the Counterweight Plate Depth

(an independent variable), T is the Counterweight Plate Thickness (a constant), and

Counterweight Plate Weight is a dependent variable .

Constraints specify the restrictions that must be satisfied for a solution. The

restrictions may represent a logical requirement, physical requirement, compatibility

among parts, safety regulations, or any other design requirement that may be required.

A constraint may be extensionally represented as tuples, or intensionally described by

mathematical expressions or computable procedures that indicate a valid or invalid

assignment for consistency check. The difference between constraints and dependent

relations is that constraints specify a limit, while dependent relations result in a value.

For example, a constraint can be stated as follows: the Platform Width must be at least

60 inches. A constraint may apply to any number of variables, including any

combination of IVs and DVs. However, since dependent variables are

deterministically defined by independent variables, the constraint ultimately depends

solely on independent variables. The number of independent variables that affect a

constraint is called the constraint’s arity. Sometimes, a independent variable may not

appear in a constraint explicitly, since it may affect the constraint through dependent

variables. Nevertheless, the relevant independent variables can still be identified by

searching the ancestors of a constraint’s dependent variables. The relationship

between constraints and independent variables is many-to-many, meaning that a

constraint may depend on multiple independent variables, and an independent

variable may affect multiple constraints.

3. A Search Strategy

Once product configuration has been formulated as a constraint satisfaction problem,

a solution can be found using search algorithms. Since they are represented by

mathematical expressions or computable procedures, dependent constraints and their

corresponding dependent relations can take a wide variety of formats. Hence, they are

not known during algorithm design time. To provide a generic search algorithm for

solving product configuration problems, we use systematic search strategies for

product configuration.

A systematic search strategy incrementally extends a partial solution towards a

complete solution by repeatedly choosing a value for another variable, consistent with

the values in the current partial solution [2]. Since it traverses the search space

systematically, the advantage is that a solution, if one exists, can eventually be found.

Also, the algorithm is general and applicable to any configuration design problems.

As previously described, dependent variables can be eliminated from search space.

Thus, only independent variables are considered as variables in search algorithms.

Backtracking is a primary algorithm in systematic search. It has two phases: a

forward phase in which the next variable is selected and the current partial solution is

extended by assigning a consistent value, if one exists for the next variable; and a

backward phase in which, when no consistent solution exists for the current variable,

attention returns to the previous variable assigned [3]. Backtracking suffers the

drawback of thrashing, i.e. repeated failure due to the same reason. The efficiency of

backtracking algorithm was improved by backjumping, a proper updating mechanism,

and variable ordering in configuration design.

 3.1 Backjumping

Backjumping improves on backtracking by analyzing the reasons for a dead-end and

jumping back to the appropriate variable. In backtracking, a dead-end is encountered

when a consistent value cannot be found for the next variable (i.e. the current partial

solution cannot be extended). Instead of just going back to the preceding variable in

the ordering, the backjumping algorithm tries to identify the source of failure and

prunes a large portion of search space without missing any potential solutions. To

help determine an appropriate backtrack point, we discuss the following three

situations:

1. A dead-end variable breaks one unary constraint. The unary constraint cannot be

affected by other variables, so if this is the case, this constraint shall never be

satisfied and the CSP is impossible to solve.

2. A dead-end variable breaks one constraint with n-ary variables. The broken

constraint has one or more variables that can affect it (excluding the dead-end

variable). Although any of these variables could be modified, the algorithm should

not skip any possible solutions. Thus, the algorithm should jump back to the

closest previous variable for this constraint. If the algorithm moves farther back, it

may skip a potential solution, and any jumps that do not go back beyond this point

will be futile since this constraint will fail again.

3. A dead-end variable breaks more than one constraint with n-ary variables. In this

case, the values of the variable can not become valid unless all broken constraints

are affected. Thus, jumping back to the closest previous variable among all broken

constraints is not adequate, since it does not affect the constraints whose variables

appear before that variable. In order to ensure that all constraints are affected, the

algorithm should jump back to the farthest variable, called the cutoff variable,

among the closest variables of all broken constraints. The algorithm cannot jump

back farther without facing the risk of missing potential solutions. After jumping

back, still, if none of the values are compatible with at least one constraint for the

cutoff variable, then the algorithm should jump back to the closest variable among

any connected constraints for the new current/dead-end variable.

3.2 Updating mechanism for consistency checks

While choosing appropriate backtrack points could potentially prune a large portion

of search space, determining the timing for constraint consistency checks can also

improve the efficiency of the search algorithm. It is necessary to have an updating

mechanism that identifies which constraints and dependent variables have been

affected by the change of an independent variable’s value, and updates their status

accordingly. The efficiency of the updating mechanism has a major impact on the

overall efficiency of the search algorithm, since updating is performed frequently

(every time an IV’s value is changed).

However, enabling each dependent variable of a constraint to re-compute itself

does not guarantee the values will be properly updated, as the constraint and

dependent variables need to be updated after their ancestors. In our previous

approach [13], a list of dependent variables is stored for each variable (either

independent variable or dependent variable) as its direct descendants. Whenever an

independent variable is modified, it calls the update procedures of its direct

descendants, which in turn call the update procedures of their direct descendants, and

so on. In this way, every dependent variable will be properly updated and correctness

of the constraint’s status is guaranteed. However, this approach may still update a

dependent variable more than once. For example, suppose we have (A -> B, C) and

(C -> B). An arrow indicates dependency: (A -> B) means that B is a direct

descendant of A (or, equivalently, A is a direct ancestor of B). Once A is updated

properly, and B’s update procedure is called and followed by C’s update procedure

since B and C are A’s direct descendants. However, B is C’s direct descendant as

well, so B’s update procedure shall be called once more, right after C’s update

procedure. Consequently, B’s update procedure was called more than once, because

A does not know which of its direct descendants to be updated first.

Independent variable

Dependent variable

Constraint

Dependent relation

7.5 12.5 15.5 19.5

19 14127 15

Ci

1

 1 3

1

2

1 1

9

IVi

16
CPVi DVi 5 8 10

4 6 11 13 17 18

Fig. 1. A directed acyclic graph of independent variables, dependent variables and constraints

In our current approach, the dependencies among variables and constraints are

considered as arcs in a directed graph, where variables and constraints are nodes and

there is an arc from every variable to each one of its descendants (Fig. 1). In the

directed graph, independent variables do not have any ancestors, and constraints do

not have any descendants. Dependent variables can only be derived from independent

variables or other dependent variables that in turn are eventually derived from

independent variables. This directed graph can be shown to be acyclic, implying that a

topological ordering exists. A topological ordering of the directed acyclic graph

provides an updating order which guarantees that each variable and constraint’s status

are correct and need to be computed only once. Multiple topological orderings are

valid, but the recommended ordering is formed by minimizing the value given to

constraints and dependent variables, so that constraints can be evaluated as early as

possible.

As previously described, constraints are often indirectly linked to independent

variables through dependent variables in configuration design. Also a dependent

variable may depend on one or more independent variables. Thus, if any of the

independent variable ancestors for a dependent variable is not instantiated, the

dependent variable cannot be used as an authentic source for evaluating associated

constraints. The evaluation of a constraint has to wait until the last independent

variable ancestor is instantiated. Using the criteria for determining proper timing for

consistency checks, unnecessary repeated updating can be avoided.

3.3 Variable Ordering

The performance of the backjumping algorithm can also be improved by choosing the

order of variable instantiation [6]. In the algorithm, variable ordering is used as a pre-

processing technique. A fixed order is determined by heuristic approaches prior to

starting of the search. Several heuristics have been analyzed for selecting variable

order. One consideration is the variable’s degree, a number of variables that are

connected with it. The maximum degree variable is instantiated first. If variables are

tied in the first heuristic, then a variable with the fewest domain values would be

chosen as a secondary heuristic. However, the success of these heuristics is not

independent of the specific product configuration problem; hence, the search

algorithm may have to try several orderings before finding a good variable ordering.

4. A Case Study and Experimental Results

To exam the efficiency of the constraint model and search algorithm described above,

we have tested a configuration design problem—configuring elevator systems [14].

The configuration process begins with a list of customer requirements, such as

elevator car capacity and speed, and building dimensions. To configure an elevator

system, one must assign a set of variables that satisfies both customer requirements

and design constraints. In product configuration problems, not all variables are

compatible, and certain combinations may not meet functional or safety regulations.

The algorithm has to modify variables until it achieves a valid configuration.

In order for the search algorithm to find a valid solution for the elevator design, it

is necessary to generate associated product definitions in the constraint model. There

are 241 variables in the elevator system. Among these, there are 32 independent

variables (such as platform model and counterweight buffer quantity), and 184

dependent variables (such as counterweight quantity and hoist cable quantity), and 25

input variables (such as car capacity and car speed). Input variables capture customer

requirements and are considered as fixed values upon entering the system. There are

also 50 constraints that establish criteria for functional and safety regulations, which

guide the search algorithm to find a valid solution. In addition to variables and

constraints, there are also dependent relations, such as mathematical expression or

tables, between dependent variables and independent variables. These relations

define how the dependent variables are derived from independent variables.

The backjumping search algorithm was implemented in Java using IBM VisualAge

for Java 4.0. It solved almost all elevator configuration problems that we tried in less

than 15 seconds. The only problematic case is when car capacity and car speed inputs

are set to their maximum possible values. For this scenario, the best variable ordering

(we could find) took 50 seconds, whereas the automated variable ordering never

completed the search. A series of tests was performed on an Intel Pentium 4 CPU,

1.8GHz, and 1G RAM running on Windows 2000. The results below show that the

algorithm works quite well with an automated variable ordering. Note that these

results are the slowest test cases found for the given car capacity and car speed. For

instance, other test cases with car capacity at 4000lbs and car speed set to 400 feet per

minute found solutions in 10-15 seconds.

Table 1. Backjumping results (with automated variable ordering)

Car Speed (feet per minute) Worst-case time

found (seconds) 200 250 300 350 400

2000 1.5 ---- ---- ---- 3.4

3000 ---- 1.5 ---- 4.5 6.2

Car

Capacity

(pounds) 4000 2.4 ---- 2.5 ---- Forever

A web-based application prototype system was implemented using this algorithm.

The system allows the customer to enter requirements, and displays the final

configuration results back to the customer through the Web. The Web application

was deployed on IBM WebSphere Application Server.

5. Conclusions

Market trends that affect today’s competitive environment are changing dramatically.

Mass production of identical products - the business model for industries in the past -

is no longer viable for many sectors. Customized products offer great market potential

to manufacturers in the current climate of global competition and improved customer

satisfaction. The complexity of products brings along new demands for configuration

technology to cope with search efficiency. However, commercially available

configuration systems only support build-to-order type product configuration in which

constraints are represented by tuples. In this paper, an extension of the CSP paradigm

was presented to cover dependent constraints with mathematical expressions in

product configuration. The extension supports n-ary dependent constraints and

variables with both discrete and numeric domains. Dependent variables are separated

from independent variables to reduce search space. The updating mechanism

proposed for dependent variables and constraints ensures correctness while avoiding

repeated computations. The search algorithm is based on backjumping, a systematic

search strategy. Specific backjumping situations were discussed to cover many-to-

many relations between variables and constraints. Several heuristics of variable

ordering were also applied for the backjumping search algorithm. The implemented

algorithm is capable of solving almost all elevator configuration problems within 15

seconds based on an elevator case study. The test results show that the algorithm

works well with a good (automated) variable ordering heuristic. This approach can be

easily applied to a wide variety of product configuration problems.

References

1. Bartak, R.: Theory and Practice of Constraint Propagation. Proceedings of CPDC2001

Workshop (invited talk). Gliwice (2001) 7-14

2. Bartak, R.: Constraint Programming: In Pursuit of the Holy Grail. Proceedings of Week of

Doctoral Students (WDS99), Part IV. MatFyzPress, Prague (1999) 555-564

3. Dechter, R. and Frost, D.: Backjump-based Backtracking for Constraint Satisfaction

Problems. Artificial Intelligence, Vol. 136 (2002) 147-188

4. Fleischanderl, G., Friedrich, G., Haselboeck, A., Schreiner, H. and Stumptner, M.:

Configuring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent

Systems, Vol. 13 (1998) 59-68

5. Gelle, E. and Faltings, B.: Solving Mixed and Conditional Constraint Satisfaction Problems.

Constraints, Vol. 8, No. 2 (2003) 107-141

6. Kumar, V.: Algorithms for Constraint Satisfaction Problems: A Survey. AI Magazine, Vol.

13, No. 1 (1992) 32-44

7. Miguel, I. and Shen, Q.: Solution Techniques for Constraint Satisfaction Problems:

Foundations. Artificial Intelligence Review, Vol. 15 (2001) 243-267

8. Mittal, S. and Falkenhainer, B.: Dynamic Constraint Satisfaction Problems. Proceedings of

the 8th National Conference on Artificial Intelligence (1990) 25-32

9. Mittal, S. and Frayman, F.: Towards a Generic Model of Configuration Tasks. Proceedings

of the 11th IJCAI, Detroit, MI (1989) 1395-1401

10. Sabin, D. and Freuder, E. C.: Configurations as Composite Constraint Satisfaction.

Working Notes, AAAI Fall Symposium on Configuration, Boston (1996) 28-36

11. Stumptner, M.: An Overview of Knowledge-Based Configuration. AI Communications:

The European Journal on Artificial Intelligence, Vol. 10, No. 2 (1997) 111-125

12. Stumptner, M. and Haselbock, A.: A Generative Constraint Formalism for Configuration

Problems. 3rd Congress Italian Assoc. for AI. Torino, Italy. Lecture Notes in AI, Vol. 729.

Springer-Verlag (1993) 302-313

13. Xie, H. and Lau, F.: Towards Engineer-to-order Product Configuration. Proceedings of the

ISCA 15th International Conference, Computer Application in Industry and Engineering.

San Diego, CA, USA (2002) 180-184

14. Yost, G. R. and Rothenfluh, T. R.: Configuring Elevator Systems. Int. J. Human-Computer

Studies, Vol. 44 (1996) 521-568

http://www.informatik.uni-trier.de/~ley/db/journals/constraints/constraints8.html#GelleF03

