Skip to main content

A Resource Model for Large-Scale Non-hierarchy Grid System

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3033))

Abstract

Computational Grid and Peer to Peer computing system are interlapping with each other progressively. This paper brings forward a resource model for future large-scale non-hierarchy grid system. With this model we can represent heterogeneous resources sharing relationships. Based on the assumption of power-law degree distribution and result of Lada A. Adamic [20], we find that the unstructured locating algorithms used in P2P system do not suit this resource model. Finally we suggest that it is necessary to classify Grid systems, observe network topology and build classified resource models for different types of Grid system.

This work is supported by National Natural Science Fund of China (No. 60173031).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Anatomy of the Grid: Enabling Scalable Virtual Organizations, IJSA (2001), http://www.globus.org

  2. Foster, I., Today, G.: What is the Grid: A Three Point Checklist. Opinion Pieces, July 20 (2002), http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

  3. Oram, A. (ed.): Peer-to-Peer Harnessing the Power of Disruptive Technologies. O’Reilly Associates, Sebastopol (2001)

    Google Scholar 

  4. Bollob’as, B.: Random Graphs. Academic Press, New York (1985)

    Google Scholar 

  5. Erdos, P., R’enyi, A.: On random graphs. Publications of Mathematicae 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  6. Erdos, P., R’enyi, A.: On the evolution of random graphs. Publications of the Mathe-matical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  7. Erdos, P., R’enyi, A.: On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungary 12, 261–267 (1961)

    Article  MathSciNet  Google Scholar 

  8. Albert, R., Barabasi, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74 (January 2002)

    Google Scholar 

  9. Huberman, B.A., Adamic, L.A.: Growth dynamics of the world-wide web. Nature 401, 131 (1999)

    Google Scholar 

  10. Kleinberg, J.M., Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-I., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Broder, Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Computer Networks 33, 309–320 (2000)

    Article  Google Scholar 

  12. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. Comp. Comm. Rev. 29, 251–262 (1999)

    Article  Google Scholar 

  13. Iamnitchi, A., Foster, I., Nurmi, D.C.: A peer-to-peer approach to resource location in grid environments High Performance Distributed Computing, 2002. In: Proceed-ings. 11th IEEE International Symposium on HPDC-11 2002, pp. 419–419 (2002)

    Google Scholar 

  14. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter P2P networks. In: Founda-tions of Computer Science, Proceedings. 42nd IEEE Symposium on 2001, pp. 492–499 (2001)

    Google Scholar 

  15. Albert, R., Jeong, H., Barab’asi, A.-L.: Diameter of the world-wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  16. Govindan, R., Tangmunarunkit, H.: Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, vol. 3, p. 1371. IEEE, Piscataway (2000)

    Google Scholar 

  17. Li, W., Xu, Z., Dong, F., Zhang, J.: Grid Resource Discovery Based on a Routing-Transferring Model. In: 3rd International Workshop on Grid Computing, Grid 2002 (2002)

    Google Scholar 

  18. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. PHYSICAL REVIEW E, VOLUME 64, 046135 (2001)

    Article  Google Scholar 

  19. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications

    Google Scholar 

  20. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. PHYSICAL REVIEW E, VOLUME 64, 046135 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, Q., Lu, X., Chen, L., Li, M. (2004). A Resource Model for Large-Scale Non-hierarchy Grid System. In: Li, M., Sun, XH., Deng, Q., Ni, J. (eds) Grid and Cooperative Computing. GCC 2003. Lecture Notes in Computer Science, vol 3033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24680-0_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24680-0_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21993-4

  • Online ISBN: 978-3-540-24680-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics