Toward the Composition of Semantic Web
Services

Jinghai Rao and Xiaomeng Su

Department of Computer and Information Science,
Norwegian University of Science and Technology,
N-7491, Trondheim, Norway
{jinghai, xiaomeng}@idi.ntnu.no

Abstract. This paper introduces a method for automatic composition
of semantic web services using linear logic theorem proving. The method
uses semantic web service language (DAML-S) for external presentation
of web services, and, internally, the services are presented by extralogi-
cal axioms and proofs in linear logic. Linear logic(LL)[2], as a resource
conscious logic, enables us to define the attributes of web services for-
mally (in particular, qualitative and quantitative value of non-functional
attributes). The subtyping rules that are used for semantic reasoning are
presented as linear logic implication. We propose a system architecture
where the DAML-S parser, linear logic theorem prover and semantic rea-
soner can work together. This architecture has been implemented in Java
programming language.

1 Introduction

The Grid is a promising computing platform that integrates resources from dif-
ferent organizations in a shared, coordinated and collaborative manner to solve
large-scale science and engineering problems. The current development of the
Grid has adapted to a services oriented architecture and, as a result, recently
Grid technologies are evolving towards an Open Grid Services Architecture
(OGSA).The convergence of Web services with Grid computing will accelerate
the adoption of Grid technologies. [1] defines a Grid service as a Web service
that provides a set of well-defined interfaces and follows specific conventions. As
such, Grid service will inherently share some of the same problems and technical
challenges of Web service in general.

The ability to efficiently and effectively select and integrate inter-
organizational services on the web at runtime is a critical step towards the devel-
opment of the online economy. In particular, if no single web service can satisfy
the functionality required by the user, there should be a possibility to combine
existing services together in order to fulfill the request rapidly. However, the task
of web service composition is a complex one. Firstly, web services can be created
and updated on the fly and it may be beyond human capabilities to analyze
the required services and compose them manually. Secondly, the web services
are developed by different organizations that use different semantic model to

M. Li et al. (Eds.): GCC 2003, LNCS 3033, pp. 760-[Z67] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Toward the Composition of Semantic Web Services 761

describe the features of services. The different semantic models indicate that
the matching and composition of web service have to take into account on the
semantic information.

In this paper, we propose a candidate solution which we believe to contribute
to solving the two challenges. We describe a method for automated web service
composition which is based on the proof search in (propositional) Multiplicative
Intuitionistic fragment of Linear Logic (MILL [3]). The idea is, given a set of
existing web services and a set of functionality and non-functional attributes,
the method finds a composition of atomic services that satisfies the user re-
quirements. The fact that Linear Logic is resource conscious makes it possible
to make proving on both qualitative and quantitative non-functional attributes
of web services. Because of the soundness of the logic fragment correctness of
composite services is guaranteed with respect to initial specification. Further,
the completeness of logic ensures that all composable solutions would be found.

The rest of this paper is organized as follows: Section 2 presents a system ar-
chitecture for composition of semantic web services. Section 3 presents the meth-
ods on transformation between DAML-S documents and Linear Logic axioms.
Section 4 discusses the usage of type system to enable semantic composition.
Section 5 is the related works and the conclusion of the paper.

DAML-S
Profile Logic Axioms li Logi
DAML-S Parser near ogie

Planner
DAML-S Proof «
Process \4 . <

Coordinator

I

Variable
ojjuewas

uopeoy|d

P Reseasoner

<« Gul ’ ’ i
i N Semantic

Fig. 1. Architecture for Service Composition

2 The Service Composition Architecture

Figure[lldepicts the general architecture of the proposed web service composition
process. The approach is presented by the following process. First, a description
of existing web services(in the form of DAML-S Profile) is translated into axioms
of Linear Logic, and the requirements to the composite services are specified in
form of a Linear Logic sequent to be proven. Second, the Linear Logic Theorem
Prover determines whether the requirements can be fulfilled by composition of
existing atomic services. On reading each propositional variable, the theorem
prover requires the semantic reasoner to provide possible subtyping inference.
The subtypings are inserted into the theorem prover as logic implications. If one
or more proofs are generated the last step is the construction of flow models
(written in DAML-S Process). The process is controlled by the coordinator,

762 J. Rao and X. Su

especially when components are distributely located. During the process, the
user is able to interact with the system by GUIL

In this paper, we pay special attention on the DAML-S Parser and the Seman-
tic Reasoner. The detail on theorem proving part has been already introduced in
[7]. The readers who have knowledge about Linear Logic or theorem proving are
able to understand this part easily without referring to the separate publication.

3 Transforming from DAML-S to Linear Logic Axioms

In our system, the web services are specified by DAML-S profile externally and
presented by LL Axioms internally. The transformation is made automatically
by DAML-S Parser. The detail presentation of DAML-S can be found in [4].
Here, we focus on the presentation of LL axioms.

Generally, a requirement to composite web service, including functionalities
and non-functional attributes, can be expressed by the following formula in LL:

11;431 = ([—0 ()) ® 432

where I is a set of logical axioms representing available atomic web services,
A; is a conjunction of non-functional constraints. As is a conjunction of non-
functional results. We will distinguish these two concepts later. I — O is a
functionality description of the required composite service. Both I and O are
conjunctions of literals, I represents the set of input parameters of the service
and O represents output parameters produced by the service. Intuitively, the
formula can be explained as follows: given a set of available atomic services and
the non-functional attributes, try to find a combination of services that computes
O from I. Every element in I" is in form A; F (I —o O) ® Ay, whereas meanings
of Ay, Ay, I and O are the same as described above.

Next, we describe the detail procedure to transform a DAML-S document
into the linear logic expression. We present in sequence the transformation on
functionalities and non-functional attributes. Afterwards, we present the whole
process by an example.

3.1 Transforming on Functionalities

The functionality attributes are used to connect atomic services by means of
inputs and outputs. The composition is possible only if output of one service
could be transferred to another service as input.

The web service is presented by DAML-S profile externally. The functional-
ity attributes of the “ServiceProfile” specifies the computational aspect of the
service, denoting by the input, output, precondition and postcondition.

Below is an example of the functionalities for a temperature report service:

<profileHierarchy:Information_Service rdf:ID="Temperature">
<service:presentedBy rdf:resource="&service;#Temperature"/>
<profile:serviceName>Temperature_Report</>
<profile:textDescription>
The service provides the temperature of the city with the given zip code

Toward the Composition of Semantic Web Services 763

</profile :textDescription>
<profile:input>
<profile:ParameterDescription rdf:ID="ZipCode">
<profile:parameterName>ZipCode</profile:parameterName>
<profile:restrictedTo rdf:resource="&zo;#ZipCode"/>
<profile:refersTo rdf:resource="&model;#ZipCode"/>
</profile:ParameterDescription>
</profile:input>
<profile:output>
<profile:ParameterDescription rdf:ID="CelsiusTemp">
<profile:parameterName>CelsiusTemp</profile:parameterName>
<profile:restrictedTo rdf:resource="&wo;#CelsTemp"/>
<profile:refersTo rdf:resource="&model;#CelsiusTemp"/>
</profile:ParameterDescription>
</profile:output>
</profileHierarchy:Information_Service>

From the computation point of view, this service requires an in-
put that has type “&zo;#ZipCode” and produces an output that has
type “&zo;#CelsTemp”, the value of temperature measured in Celsius.
Here, we wuse entity types as a shorthand for URles. For example,
&zo; # ZipCode refers to the URI of the definitions for zip code parameter:
http://www.daml.org/2001/10/html/zipcode-ont\#ZipCode| When translating to
Linear Logic formula, we translate the field “restrictedTo” (variable type) in-
stead of the parameter name, because we regard the parameters’ type as their
specification. Below is the example propositional linear logic formula that ex-
presses the above DAML-S document:

F &20; #ZZP Code —O&service;# Temperature &tC; # Cels Temp

3.2 Non-functional Attributes

Non-functional attributes are useful in evaluating and selecting service when
there are many services that have the same functionalities. In the service pre-
sentation, the non-functional attributes are specified as facts and constraints.
We classify the attributes into four categories:

— Consumable Quantitavie Attributes: These attributes limit the amount
of resources that can be consumed by the composite service. The total
amount of resource is the sum of all atomic services that formulate the
composite service.

— Non-consumable Quantitative Attributes: These attributes are used to
limit the quantitative attributes for each single atomic service. The attributes
can present either amount or scale.

— Qualitative Constraints: Those attributes which can’t be expressed by
quantities are called qualitative attributes. Qualitative Constraints are those
qualitative attributes which specify the requirements to execute a web ser-
vice.

— Qualitative Facts: Another kind of qualitative attributes, such as service
type, service provider or geographical location, specify the facts regarding
the services’ environment. Those attributes can be regarded as goals in LL.

http://www.daml.org/2001/10/html/zipcode-ont#ZipCode

764 J. Rao and X. Su

The different categories of non-functional attributes are presented differently
in logical axioms. The non-functional attributes can be described as either con-
straints or results. The constraints and results of the services can be presented
as follows:

— The constraints to the service:
A; = Consumable” ® NonConsumable’ ®!Constraint
— The results produced by the service:

Ay = NonConsumable’ ®! Fact

3.3 Example

Here, we illustrate the LL presentation of the temperature report service example
where both functionalities and non-functionalities have been taken into consid-
eration. The complete DAML-S description of this example can be found at
http://bromstad.idi.ntnu.no/services/TempService.daml. For the sake of read-

ability, we omit the namespace in the name of the parameters.
The available atomic web services in the example are specified as follows:

NOK'" v+ LengthCM —opmoinen LengthInch
I' = CA_MICROSOFT \ (LengthlInch ® Brand ® Model —og,; PriceUSD) @ LOC_NORWAY
NOK?®, QUALITY? + (PriceUSD —oysaonor. PriceNOK) ® QUALITY ?

The formula presents three atomic services. name2code outputs the zip code
of a given city. temp reports the Celsius temperature of a city, given the zip
code of the city. trans transforms the Celsius temperature to the Fahrenheit
temperature. NOK' in the left hand side of the name2code service denotes
that 10 Norwegian Krones(NOK) are consumed by executing the service. The
service trans costs 5 NOK and has a quality level 2. The quality level is not
a consumable value, so it appears at both the left and right hand sides. In the
specification it is also said that the temperature reporting service temp is located
in Norway and it only responses to the execution request that has certificated by
Microsoft. For other attributes which are not specified in service specification,

the values are not considered.)]
The required composite service takes a city name as input and outputs the

Fahrenheit temperature in that city. It is specified by LL as follows:

I'; Ay (LengthCM ® Brand @ Model — PriceNOK) @ As

The non-functional attributes for the composite service are:

A; = NOK? @ QUALITY?®'CA_MICROSOFT
Ay = QUALITY?® LOC_NORWAY

This means that we would like to spend no more than 20 NOK for the
composite service. The quality level of all the selected services should be no
higher than 3. The composite service consumer has certification from Microsoft
({CA_MICROSOFT) and it requires that all location-aware services are located

http://bromstad.idi.ntnu.no/services/TempService.daml

Toward the Composition of Semantic Web Services 765

within Norway (!ILOC_NORWAY). ! symbol describes that we allow unbound
number of atomic services in the composite service.

For the qualitative constraints (location), the service uses LOC_NORWAY to
determine its value and we can determine in the set of requirements A; whether
a service meets the requirement.

By now, we have discussed how DAML-S specification have been translated
to LL extralogical axioms. Next step is to derive the process model from the
specification of the required composite service. If the specification can be proven
to be correct, the process model is extracted from the proof. we have stressed
the proof in a separate publication [7] and therefore we don’t go into detail
here. The result dataflow of the selected atomic service are presented through
a graphic user interface. A screen shot is presented in figure 2 In figure [, the
interface of the user required service is presented in the ServiceProfile panel
(upperright) and the dataflow of the component atomic services is presented in
the ServiceModel panel (lowerright).

I.I:;E_@EEEEEBEE!

I remssensc

it

i
i

Fig. 2. The Screen Shot

4 Composition Using Semantic Description

So far, we considered only exact match of the parameters in composition. But
in reality, two services can be connected together, even if the output parameters
of one service does not match exactly the input parameters of another service.
In general, if a type assigned to the output parameter for service A is a subtype
of the type assigned to an input parameter for service B, it is safe to transfer
data from the output to the input. If we consider resources and goals in LL, the
subtyping is used in two cases: 1) given a goal x of type T, it is safe to replace
x by another goal y of type S, as long as it holds that T is a subtype of S;
2) conversely, given a resource x of type S, it is safe to replace = by another
resource y of type T, as long as it holds that T is a subtype of S.

In the following we extend the subsumption rule for both resource and goal.
Here we should mention that the rules are not extension to LL. The subtyp-
ing can be explained by inference figures of LL. We write in following —o. to

766 J. Rao and X. Su

emphasis that these inference rules are for typing purposes, not for sequencing
methods, when constructing programs.
First of all, the subtype relation is transitive.

NFT —oc S I'FS—oc U
N PFT —. U

subtyping transitivity

In addition, subsumption rules state the substitution between types.

YXFT TI'ET —oc S XSG I'FT — S
X, r+=s X, N'TFG
goal subsumption resource subsumption

Such subtyping rules can be applied to either functionality (parameters) or
non-functional attributes. Here we use two examples to illustrate the basic idea.
First, let us assume that the output of the temperature reporting service is air
temperature measured by Celsius scale, while the input of temperature transla-
tion service is all Celsius temperature. Because the later is more general than the
former, it is safe to transfer the more specific output to the more general input.
Another example considers the qualitative facts. If an atomic service is located
in Norway, we regard Norway is a goal in LL. Because Norway is a country in
Europe, it is safe to replace Norway with Europe. Intuitively, if the user requires
a service that is located within Europe, the service located within Norway meets
such requirement.

In this paper, we assume that the ontology used by service requester and that
for the service provider are interoperable. Otherwise, the ontology integration is
another issue which is beyond the scope of this paper.

5 Conclusion

This paper approaches the important issue of automatic semantic web service
composition. It argues that Linear Logic, combined with semantic reasoning for
relaxation of service matching (choosing), offers a potentially more efficient and
flexible approach to the successful composition of web services. To that end,
an architecture for automatic semantic web service composition is introduced.
The functional settings of the systems are discussed and techniques for DAML-S
presentation, Linear Logic presentation, and semantic relaxation are presented.
A prototype implementation of the approach is proposed to fulfill the task of
representing, composing and handling of the services. This paper concentrate
on the automatic translation part and the semantic relaxation part, while the
theorem proofing part has been stressed elsewhere[7].

Some works have been performed on planning based on semantic description
of web services. In [5], the authors adapt and extend the Golog language for
automatic construction of web services. The authors addressed the web service
composition problem through the provision of high-level generic procedures and
customizing constraints. SWORDI6] is a developer toolkit for building compos-
ite web services. SWORD uses ER model to specified the inputs and outputs
of the web services. As a result, the reasoning is made based on the entity

Toward the Composition of Semantic Web Services 767

and attribute information provided by ER model. [8] presents a semi-automatic
method for web service composition. The choice of the possible services are based
on functionalities and filtered on non-functional attributes.

The main difference between our methods and the above methods is we con-
sider the non-functional attributes during the planning. Usage of Linear Logic as
planning language allows us formally define the non-functional characteristics of
web services, in particular, quantitative attributes. In addition, we distinguish
the constraints and facts in qualitative attributes. The planner treats them dif-
ferently in logic formulas.

Also, as more and more organizations and companies embrace the idea of
using web service interface as a cornerstone for future Grid computing archi-
tecture, the author hope that the revealing and discussing of semantic related
issues will inform researchers in Grid computing of the intricate problem of ser-
vice composition which might as well rise up in Grid service research.

Our current work is directed to add the disjunction connective to the logical
specification of service output. This is useful when we should consider excep-
tions or optional outputs of atomic services. By using disjunction, the planner
is also able to generate control constructs such as choice and loop. Although
the introduction of disjunction is easy in logic presentation, the proving speed is
slowed down significantly. The mechanism to improve the computation efficiency
of proving is also under consideration.

References

1. L. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid. On-
line: http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9.2002-06-22.pdf, Jan-
uary 2002.

2. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

3. Patrick Lincoln. Deciding provability of linear logic formulas. In London Mathe-
matical Society Lecture Note Series, volume 222. Cambridge University Press, 1995.

4. David Martin et al. DAML-S(and OWL-S) 0.9 draft release. Online:
http://www.daml.org/services/daml-s/0.9/, May 2003.

5. Sheila Mcllraith and Tran Cao Son. Adapting golog for composition of semantic
web services. In Proceedings of the FEighth International Conference on Knowledge
Representation and Reasoning(KR2002), Toulouse, France, April 2002.

6. Shankar R. Ponnekanti and Armando Fox. SWORD: A developer toolkit for web
service composition. In The Eleventh World Wide Web Conference, Honolulu, HI,
USA, 2002.

7. Jinghai Rao, Peep Kungas, and Mihhail Matskin. Application of linear logic to web
service composition. In The First International Conference on Web Services, Las
Vegas, USA, June 2003. CSREA Press.

8. Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web
services using semantic descriptions. In Web Services: Modeling, Architecture and
Infrastructure” workshop in conjunction with ICEIS2003, 2002.

	Introduction
	The Service Composition Architecture
	Transforming from DAML-S to Linear Logic Axioms
	Transforming on Functionalities
	Non-functional Attributes
	Example

	Composition Using Semantic Description
	Conclusion

