
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 635–638, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Parallelization of the IDEA Algorithm

Vladimir Beletskyy and Dariusz Burak

Faculty of Computer Science & Information Systems, Technical University of Szczecin,
49 Żołnierska St, 71-210 Szczecin, Poland
{vbeletskyy, dburak}@wi.ps.pl

Abstract. In this paper, we present results of parallelizing the International
Data Encryption Algorithm (IDEA). The data dependence analysis of loops was
applied in order to parallelize this algorithm. The OpenMP standard is chosen
for presenting the parallelism of the algorithm. The efficiency measurement for
a parallel program is presented.

1 Introduction

Considering the fact that a relatively large part of the sequential C source code
implementing the IDEA algorithm is filled in with "for" or "do-while" loops and the
most of computation is comprised in these loops, there is an opportunity to parallelize
this algorithm. A parallel IDEA algorithm permits us to reduce the time of running
cryptographic tasks on multiprocessor computers. This problem is also connected
with the current world tendency to hardware implementations of cryptographic
algorithms (just because we also need parallel algorithms in this case).

The International Data Encryption Algorithm (IDEA), developed at Swiss Federal
Institute of Technology in Zurich by James L. Massey and Xuejia Lai, published in
1990 (the algorithm was called IPES (Improved Proposed Encryption Standard) until
1991), and popularized by commercial versions of the PGP protocol, is used
worldwide in various banking and industry applications.

The purpose of this paper is to present the IDEA algorithm parallelization.

2 Algorithm Parallelization

A C source code of the sequential IDEA algorithm in the ECB mode contains eight
"for" or "do-while" loops (including no I/O function) [1].

We have used Petit to find dependences in source loops and the OpenMP standard
to present parallelized loops. Developed at the University of Maryland under the
Omega Project and freely available for both DOS and UNIX systems, Petit is a
research tool for analyzing data dependences in sequential programs [2].

The OpenMP Application Program Interface (API) supports multi-platform shared
memory parallel programming in C/C++ and Fortran on all architectures including
Unix and Windows NT platforms. OpenMP is a collection of compiler directives,

636 V. Beletskyy and D. Burak

library routines and environment variables that can be used to specify shared memory
parallelism [3].

To build the valid parallel program, it is necessary to preserve all the dependences
of the program [4].

The process of the IDEA algorithm parallelization can be divided into the
following stages:

- carrying out the dependence analysis of a sequential source code in order to detect
parallelizable loops,

- selecting parallelization and transformation methods,
- constructing sources of parallel loops in accordance with the OpenMP API

requirements.

The most time-consuming are the idea_enc() and the idea_dec() functions
presented below [1]:

2.1
void idea_enc (idea_ctx *c, unsigned char *data, int
blocks) {
int i;
unsigned char *d = data;
for (i=0; i<blocks; i++) {

ideaCipher (d, d , c->ek);
d += 8;
}

}

2.2
void idea_dec (idea_ctx *c, unsigned char *data, int
blocks) {
int i;
unsigned char *d = data;
for (i=0; i<blocks; i++) {

ideaCipher (d, d , c->dk);
d += 8;
}

}

Taking into account the strong similarity of these loops (there is the only difference
between them − the first loop operates on variable "ek", the second does on "dk";
variables "ek" and "dk" are of the same type), we examine only the 2.1 "for" loop.
However, this analysis is also valid in the case of the 2.2 "for" loop.

The parallelization process of the 2.1 loop consists of the five following steps:

- filling in the 2.1 "for" loop by the body of the function ideaCipher(d,d,c->ek)
(otherwise, we cannot apply the data dependence analysis),

- conversion of the nested "do-while" loop [1] to an equivalent nested "for" loop,
- replacement of pointer operations with suitable array indexing for "in" and "out"

variables,

Parallelization of the IDEA Algorithm 637

- removal of the expression “d += 8;” located in the end of the original loop body
and the insertion of the statements assigning values to the variables inbuf and
outbuf, “inbuf = &d[8*i];” and “outbuf = &d[8*i];”, respectively, in the
beginning of the transformed loop body,

- appropriate variables privatization using OpenMP standard directives and clauses.

The skeleton of the parallel 2.1 "for" loop is the following:

#pragma omp parallel private
(i,ii,t16,t32,x1,x2,x3,x4,inbuf,outbuf,key,s2,s3,
in,out)
#pragma omp for
for (i=0;i<blocks;i++) {

inbuf = &d[8*i];
outbuf = &d[8*i];
key = c->ek;
in = (word16 *)inbuf;
x1 = in[0];
...
for (ii=0;ii<8;ii++) {
...
}
...
out[0] = x1;
...

}

The innermost "for" loop, included in the parallel 2.1 loop, is unparallelizable
without applying advanced techniques of parallelization due to existing anti and
output dependences and pointer operations.

The 2.2 "for" loop was parallelized in the same way as the 2.1 loop.
In the similar way, we have parallelized two "for" loops included in the

ideaExpandKey() function and one loop included in the ideaInvertKey() function [1].
The remaining three sequentially iterated loops are unparallelizable. There are two

reasons of this:
- occurrence of both data dependences and pointer operations in the loop body,
- occurrence of the instruction "return" in the loop body.

3 Experiments

In order to study the efficiency of the parallelization proposed, the Omni OpenMP
Compiler has been used to run the IDEA sequential and parallel algorithms. The
results received for a 15 megabytes input file using a PC computer with four
processors Xeon, 2 GHz is shown in Table 1.

The total running time of the IDEA algorithm consists of the following operations:
data receiving from an input file, data encryption and data decryption, and data
writing to an output file (both encrypted and decrypted text).

638 V. Beletskyy and D. Burak

The speed-up of the IDEA parallel algorithm depends considerably on the two
factors: the parallelism degree of the idea_enc() and idea_dec() functions and
choosing functions responsible for reading data from an input file and writing data to
an output file.

The results confirm that the idea_enc() and idea_dec() functions are parallelizable
with high speed-up (see Table 1).

The block method of reading data from an input file and writing data to an output
file was used. The following C language functions and block sizes was applied: the
fread() function and the 10-bytes block for data reading and the fwrite() function and
the 512-bytes block for data writing.

The parallelization of the loops included in the ideaExpandKey() and the
ideaInvertKey() functions has only a minimal influence on the speed-up value in the
case of the software implementation but can be useful for hardware implementations
of the parallel IDEA algorithm.

Table 1. Speed-ups of the sequential and the parallel IDEA algorithms

T
he

 n
um

be
r

of
 p

ro
ce

ss
or

s

T
ot

al
 ti

m
e

of
 th

e
ID

E
A

se
qu

en
tia

l a
lg

or
ith

m
 (

se
c)

T
ot

al
 ti

m
e

of
 th

e
ID

E
A

pa
ra

lle
l a

lg
or

ith
m

 1
 (

se
c)

T
ot

al
 ti

m
e

of
 th

e
ID

E
A

pa
ra

lle
l a

lg
or

ith
m

 2
 (

se
c)

T
ot

al
 s

pe
ed

-u
p

of
al

go
ri

th
m

 1

T
ot

al
 s

pe
ed

 u
p

of
al

go
ri

th
m

 2

T
he

 id
ea

_e
nc

()
 ti

m
e

of
 th

e
se

qu
en

tia
l a

lg
or

ith
m

 (
se

c)

T
he

 id
ea

_e
nc

()
 ti

m
e

of
 th

e
pa

ra
lle

l 1
 a

lg
or

ith
m

 (
se

c)

 T
he

 d
es

_e
nc

()
 s

pe
ed

-u
p

of
al

go
ri

th
m

 1

T
he

 id
ea

_d
ec

()
 ti

m
e

of
 th

e
se

qu
en

tia
l a

lg
or

ith
m

 (
se

c)

T
he

 id
ea

_d
ec

()
 ti

m
e

of
 th

e
pa

ra
lle

l a
lg

or
ith

m
 1

 (
se

c)

T
he

 d
es

_d
ec

()
 s

pe
ed

-u
p

of
 a

lg
or

ith
m

 1
1 38,70 38,70 38,70 1 1 17,40 17,40 1 19,35 19,35 1

2 - 20,95 21,00 1,85 1,84 - 8,90 1,96 - 9,80 1,97

3 - 14,65 14,75 2,64 2,62 - 6,00 2,90 - 6,60 2,93

4 - 10,85 10,95 3,57 3,53 - 4,35 4,00 - 4,85 3,99

The idea parallel algorithm 1 contains parallel 2.1 and 2.2 "for" loops.
The idea parallel algorithm 2 contains five parallel "for" loops.

References

1. Bruce Schneier: Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition, John Wiley & Sons; 2 edition, 1995.

2. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, D. Wonnacott: New User
Interface for Petit and Other Extensions. User Guide. 1996.

3. OpenMP C and C++ Application Program Interface. Ver.2.0. 2002.
4. R. Allen, K. Kennedy: Optimizing compilers for modern architectures: A Dependence-

based Approach, Morgan Kaufmann Publishers, Inc., 2001.

	Introduction
	Algorithm Parallelization
	Experiments
	References

