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Abstract. This paper describes GAPP – a framework for the execution of dis-
tributed genetic algorithms (GAs) using the H2O metacomputing environment.
GAs may be a viable solution technique to intractable problems; GAPP offers a
distributed GA framework that can lead to rapid and efficient parallel execution of
GAs from a variety of domains, with very little effort on behalf of the application
scientist. It is premised upon the common phases embodied in GA lifecycles and
contains modular implementations to handle each of them, whereas end appli-
cations simply provide domain-specific functions and parameters. GAPP is built
for H2O, a component-oriented metacomputing system that enables cooperative
resource sharing and flexible, reconfigurable concurrent computing on heteroge-
neous platforms. Experiences with the use of GAPP on H2O are described and
preliminary results are very encouraging.

1 Introduction

Genetic algorithms (GAs) are known to be an effective approach for finding approximate
solutions to complex (including NP-hard) problems. Often, when the theoretical nature
of the problem is not well known, or no analytic algorithm is readily available, the use of
nature-inspired techniques such as evolutionary algorithms or simulated annealing may
be the only way to obtain near-optimal results in reasonable time [6].

Genetic algorithms are inspired by natural evolution, where stronger individuals in
a population dominate, and eventually eliminate the weaker ones. The fitness of each
individual depends on its unique set of chromosomes, i.e. a genotype. In the computa-
tional model, individuals represent candidate solutions to a given optimization problem.
An individual genotype is represented by a data structure (a bit-vector in a canonical
case) which is evaluated using a given fitness function. The evolution is simulated as an
iterative process yielding a sequence of generations which are constructed by perform-
ing certain operations on individuals of the previous generation. The canonical set of
operations include rating, selection, crossover, and mutations.
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For non-trivial problems, when individuals are complex or the computation of a
fitness function is time-consuming, it is desirable to explore the potential for parallelism.
There are four major models of parallel GA’s [8,1]:

– Single Population Farmer-Worker Model: The farmer stores the whole population.
Individuals are split into groups which are then sent to worker machines. Workers
evaluate the fitness function and send results back to the farmer.

– Fine Grained Single Population: The single, large population is distributed among
machines; however, the population has a spatial structure which limits interactions
between individuals so that they can mate only with their neighbors.

– Coarse Grained Parallel GA: Many populations on many machines evolve inde-
pendently, but individuals are allowed to migrate between populations (The Island
Model)

– Hybrid Parallel GA: Various combinations of the above models.

In addition to the potential for speedup, the question of qualitative differences be-
tween distributed GAs and serial GAs has been studied in the past. A pioneering work
involves Grosso’s experiments of dividing a population into five demes [5], in which the
rate of improvement was found to be faster in smaller demes than in one big population,
and the rate depended on the model of migration between demes. Tanese proposed a 4D
hypercube topology of subpopulations and reported that results as good as in a serial
population model were found, with the added advantage of non-linear speedup [11]. An
important factor in distributed GAs that may affect performance is the topology of the
demes [2,4]. Tanese also found that migrating too many or too few individuals between
subpopulations degrades performance. However good results were found faster that in
serial GA even with no migration at all [12]. Other experiments showing differences be-
tween migration policies were also performed by Cantú-Paz [3]. It has also been shown
that a parallel or distributed GA may outperform a serial GA in cases where partial
solutions can be combined to form a better solution [9].

2 Design of the GAPP Framework

GAPP is a framework for coarse-grained distributed GA [8,1] computations and simula-
tions on collections of heterogeneous machines. The framework has several objectives.
First, it aims to facilitate the rapid development and deployment of distributed GA ap-
plications, and to harness the resources of multiple computer systems, regardless of
their operating system or CPU speed. In addition, it is designed to enable seamless re-
source sharing and support ad-hoc collaborations. In this model, the end-user (a domain
scientist) executes her GA application transparently on a dynamic, possibly large, and
geographically distributed collection of machines to which access is supplied by inde-
pendent contributors, without the need to have explicit login accounts established. Last
but not least, the intention of the GAPP framework is to clearly separate aspects of GA
application development, distributed data exchange, resource administration, and the
actual end-user interface, so that the framework can be programmed easily and used by
non-computer scientists. In order to support this model, four classes of actors in GAPP
have been defined (while actual users may assume single or multiple roles), as illustrated
in the Figure 1:
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Fig. 1. Actors in GAPP: Providers (P), Deployer (Dp), Developer (Dv), Client (C), GAPP con-
tainer(*) inside H2O kernel

– Providers (labelled P in the figure) supply computational power, by furnishing com-
puter resources that host an environment suitable for running GAPP (although not
necessarily exclusively). Providers define access privileges and grant security per-
missions to deployers (Dp) by specifying coarse- or fine-grained access policies
(but need not grant login or other liberal access to their resources);

– Deployers: this group consists of users who dynamically install GAPP framework
on the hosting environment supplied by providers, thus placing a layer over raw
resources and enabling their use for GA computations;

– Developers (Dv)write the actual GA application code, which defines the fitness
function and the population behavior with respect to standard GA operations. Im-
portantly, the code is not concerned with aspects of population distribution, which
are determined at run time. Once written, the code is published in a software repos-
itory (e.g. a Web server) to be available to clients (C);

– Clients are the end-users of GAPP. They harness resources supplied by providers,
deployers and developers in order to solve their specific problems. Operationally,
clients launch application codes (written by developers) within the GAPP frame-
work (installed by deployers) on a collection of distributed resources (supplied by
providers). These application codes operate on data specified by the client to solve
a particular problem.

For example, in a GA approach to determine the shortest spanning tree in a graph, a
developer implements an object that represents a spanning tree. The object must define
methods required by GAPP to perform GA operations, such as crossover of two spanning
trees. The deployer installs the GAPP container, and the client initializes it by providing
the location of the application code in a software repository, and the data describing the
graph in which the shortest spanning tree is to be found (e.g. a list of vertices). Note
that end-clients do not have to have expertise in distributed GA programming. Having
initialized sub-populations within GAPP containers, the client organizes them into a
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desired topology and initiates the evolution process. The populations evolve indepen-
dently; however, after each lifecycle, individuals migrate between populations. Every
source population designates a specified number of its best-fit individuals and sends
them to neighboring populations. Every destination population chooses, according to a
specified policy, whether (or not) to accept incoming individuals and adds them to its
list.

3 The H2O Hosting Environment

H2O is a lightweight, component-oriented framework for distributed computing [10].
It is based on a container-component model that readily hosts components written or
wrapped in Java, and provides all of the necessary scaffolding and infrastructure for
resource sharing, with high levels of security and control. Using this feature, users
may avail of resources across multiple administrative domains without the need for
login access or for cumbersome pre-arranged batch execution of distributed codes. H2O
defines both an architecture and a methodology for the construction of application-
specific or application-category-specific pluglets; GAPP follows this methodology that
leverages the resource sharing framework support of H2O to facilitate distributed GA
algorithm execution.

The distinction among actors in GAPP, presented in the previous Section, is in fact
an instance of a more general model defined by H2O. In that model, providers supply
computational resources equipped with H2O kernels (containers) and make them re-
motely available by defining appropriate access policies. Developers create code of the
H2O-compatible components (so called pluglets) and distribute it or place it in soft-
ware repositories. Subsequently, deployers instantiate these components within specific
kernels. Finally, clients connect to those deployed pluglets and take advantage of ser-
vices provided by them. One of the crucial, distinguishing features of the H2O container
model is the separation of provider and deployer roles. This separation enables providers
to share raw resources and to allow third-parties to provide added value (i.e. configure
the raw resources) remotely by dynamically deploying or hot-swapping appropriate
pluglets.

Due to the fact that the H2O design does not introduce global state (i.e. relationships
between actors are defined as pairwise rather than group-oriented), the natural fault
tolerance of the distributed island model can be leveraged. In an event of kernel crash,
resource revocation, or a network partition, GA applications may continue to run (perhaps
with small, but acceptable, decrease in efficiency) despite the loss of some subpopulations
or connectivity between subpopulations.

4 Implementation of GAPP

The GAPP container has been implemented as a population pluglet – a generic GA-
enabling component which may be plugged by deployers into H2O kernels. Once de-
ployed, a population pluglet is responsible for instantiating, initializing and controlling
populations, upon request from clients. At first, the client initializes his population by
specifying its behavior (via a pointer to a code in a software repository) and initial data,
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such as the population size, simulation starting point, etc. Then, the user may initiate
the evolution process. Once the evolution has started, the client can stay connected
and observe its progress, or may detach from the H2O kernel, and then reconnect and
gather results at some later time. It is also possible to suspend and resume the running
simulation, which may be useful for suppressing resource usage during peak hours.

To take advantage of the concurrent processing and distributed island model, it is
necessary to interconnect population pluglets and to let individuals migrate between
them. Every pluglet is connected to a generic bridge object, which is solely responsible
for the distributed communication. That way, data exchange is abstracted away from
the main course of the simulation, and does not have to be reimplemented within each
GA code. Bridges between independent population pluglets (that usually run on dis-
tributed resources) may form one-one, one-many, or many-many, uni- or bidirectional
connections. Therefore, any desired interconnect topology can be formed (see e.g. Fig-
ure 2).

Fig. 2. An example of population pluglets connected into a ring.

The initial topology is specified by the client at startup time; several predefined
canonical topologies include star, n-dimensional torus, and hypercube. Furthermore,
the topology can be modified at run time: new islands can be added, existing ones
removed, or the entire topology can be reconfigured e.g. in order to respond to varying
network conditions or CPU loads, without disrupting the ongoing computations. During
each lifecycle of the population, a fitness function is evaluated for every member of
the population. Then, according to calculated fitness values, a ranking of individuals
is created. Subsequently, the bridge is asked to copy a fixed number of the best-fit
individuals and to distribute them among the bridges it is connected to. To increase
efficiency and to avoid latency-related delays, communication is asynchronous so that
the bridge does not wait for (or care about) delivery confirmation from other pluglets.
Since migrations are not synchronized, faster machines are not constrained by slower
ones, which gives users the freedom to configure topologies without regard to relative
machine speeds.
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5 Examples and Tests

GAPP has been applied in practice to solve several textbook-problems, as well as state-
of-the-art research GA problems, and our results so far have been extremely positive.
Brief descriptions are given below.

Traveling Salesman Problem: We applied the GAPP to solve TSP on a 380-node
graph for which the optimal tour length is known to be 1621 units, according to an
integer-rounded Euclidean distance norm [7]. The first example, illustrated in Figure
3, compares the performance of a single population of 100 individuals and a ring of 5
populations of 100 individuals each. As shown, the single population found a tour length
of 1630, while in the same time the ring of 5 populations reached 1622, only a single
unit worse than the optimal value.
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Fig. 3. Single population (solid line) versus five interconnected populations (dotted lines)

The second test compared the performance of a single large population (500 indi-
viduals) to five populations of 100 individuals each, again connected in a ring. Figure
4 shows that although both approaches yielded the same near-optimal value of 1622, it
was reached by one of the ring members about 15 iterations sooner than by the single
large population.

Buckminster fullerene (C60) is a molecule consisting of 60 carbon atoms forming
a truncated icosahedron. Among all possible systems consisting of 60 atoms of carbon
distributed on a sphere, C60 is well known to be a global minimizer of a potential energy.
The optimization of potential energy of chemical structures is a difficult problem due
to the fact that the number of local minima grows exponentially with the number of
atoms, and because the function itself is expensive to calculate. We have applied GAPP
to this problem, using a surrogate form of the actual potential [13] as a fitness function
and starting from a set of randomly generated structures. Although the algorithm was
not able to reproduce C60 exactly, it obtained structures fairly close to it, as suggested
by Figure 5. We are currently investigating the feasibility of using hybrid approaches
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Fig. 4. Single large population (solid line) versus five small populations (dotted lines)

Fig. 5. Two examples of carbon nanoclusters generated by GAPP

(combining GAs with numerical optimization) to find exact global minima of potential
energy.

The examples studied in this section indicate the potential of GA methods to find
near-optimal solutions to NP-hard optimization problems commonly encountered in
applied sciences. Also, they show that the distributed approach combined with the island
model can improve performance and produce results much better than the local case.
The natural scalability and fault tolerance of the island model are features which make
it particularly appealing as a distributed computing application.
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6 Conclusions

The GAPP framework offers an elegant solution to the parallel and distributed execution
of GAs. Much of the details of distribution, managing populations in islands, and iter-
ative evolution process is handled by the framework, thus necessitating only minimal,
problem-specific effort on behalf of the domain scientist. Second, by leveraging the H2O
system architecture, the role of developers and clients is decoupled, thus enabling the
potential for increased exchange and cooperation among different groups of researchers
who may leverage each other’s efforts. Further, for applications dictated by the need
for large computational resources, fault tolerance, steering, etc., H2O resource sharing
across multiple administrative domains can be leveraged to significant advantage. These
facilities and models for the execution of distributed GAs have been tested on several
problems, and initial results are very encouraging. Hybrid techniques to combine GAs
and traditional numerical methods, adjustments to improve the results in C60 energy
minimization, a better understanding of result-quality in the island model, and charac-
terization of performance gains through parallel execution comprise the focus of current
and future work on this project.
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