
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 184–191, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Dispatching Mechanism of an Agent-Based Distributed
Event System

Ozgur Koray Sahingoz1 and Nadia Erdogan2

1 Air Force Academy, Computer Engineering Department, Yesilyurt, Istanbul, Turkey,
sahingoz@hho.edu.tr

2 Istanbul Technical University, Electrical-Electronics Faculty,
Computer Engineering Department, Ayazaga, 34469, Istanbul, Turkey

erdogan@cs.itu.edu.tr

Abstract. In recent years, event-based communication paradigm has been
extensively studied and it is considered a promising approach to develop the
communication infrastructure of distributed systems. In most of previously
developed event systems, events are defined as simple messages, such as
records tuples, or simple objects. Our work introduces a new approach which
allows events to be represented as mobile intelligent agents that are called
agvents (agent event) in the context of an agent-based distributed event system,
the Agvent System. In this paper, we present the dispatching mechanism
implemented by the Agvent System, where agvents are responsible for
determining their own paths through the network, selecting target nodes and
moving themselves to these targets.

1 Introduction

Event-based communication model represents an emerging paradigm for middleware
that asynchronously interconnects the components that comprise an application in a
potentially distributed and heterogeneous environment [1], and has recently become
widely used in application areas such as large-scale Internet services. Event-based
communication model supports either one-to-many or many-to-many communication
pattern that allows one or more application components to react to a change in the
state of another application component. Event-based communication generally
implements what is commonly known as the publish/subscribe protocol.

The publish/subscribe protocol is very well suited for connecting loosely coupled
large-scale applications in the Internet. In this model, receivers of messages express
their interest by subscribing to a class of events, and they are asynchronously notified
if a sender publishes an event which matches their subscription. In this way, the
model allows a flexible n-to-m communication among the communicating parties.

As pointed out in [2], two open problems of distributed publish/subscribe systems
(especially content-based systems) are security issues of the system and routing of
events. Security is an important issue, because it is possible for a subscriber to be
interested in an event (have a subscription for a particular event) but not be authorized
to read that event (because of restrictions from a publisher). Although defining
security architecture is important, it is outside the scope of this paper.

Dispatching Mechanism of an Agent-Based Distributed Event System 185

Fig. 1. Framework of Agvent System

For the scalability of distributed event systems, routing strategy is an important
issue also. Generally a routing table is used in an event server to select the outgoing
servers and clients, to which incoming messages will be sent. Different strategies are
used for composing routing tables such as flooding, simple routing and content based
routing [3]. In all these strategies, an event is defined as a simple message and it is
dispatched to selected targets by a manager agent in the event server. In this paper, we
propose a new approach for routing incoming events to targets. An important feature
of our model is that, it allows events to be represented as mobile and intelligent agents
that are called agvents. An agvent is an autonomous entity that acts on its own to
reach its goal. A significant capability of an agvent is its ability to discover target
nodes, namely subscribers, which need to be notified of the occurrence of an event,
and to route itself to them. This is accomplished by enabling the published agvent
itself search the knowledge base of an Agvent Server, select the registered
subscribers, clone itself and send each agent clone to a subscriber on the selected list.

In this paper, we describe the dispatching mechanism of Agvent System, which
provides high flexibility, scalability, and resilience to adverse network conditions.
The goal of the agvent model is to keep the support required from agvent servers in
the network to a minimum, placing intelligence in agvents rather than in individual
nodes. This approach provides flexibility and obviates the need for the potentially
impossible task of updating all nodes in a network for the implementation of a new
application or protocol.

In the following, first Agvent System is described in Section 2. Next, the
dispatching mechanism of Agvent System is explained in detail in Section 3, and
finally, we present our conclusion and plans for future work in Section 4.

2 Agvent System

The framework depicted in Figure 1 represents the infrastructure of Agvent System
[4] which is an agent based distributed event system that aims to meet the
communication requirements of distributed and cooperative applications through the
event-based design style. Agvent System combines two developing technologies,
mobile agents and the publish/subscribe communication paradigm, in order to benefit

Dispatch ServiceAgvent
Server

agvent

S1

S3

S2

S4

P1

P2

Pi: Publisher
Si: Subscriber

Agvent
Server Agvent

Server

Agvent
Server

Agvent
Server

Agvent
Server

186 O.K. Sahingoz and N. Erdogan

the advantages of both. Its framework consists of three main components: Publishers,
Subscribers and a Dispatch Service. Publishers decide on what events are
observable, how to name or describe those events, how to actually observe the event,
and then how to represent the event as a discrete entity, actually an agent that is called
an agvent. Subscribers determine the particular agvent types they are interested
in and describe them in the form of a rule which is processed by the Dispatch Service.
Dispatch Service, which is responsible for dispatching incoming agvents to
registered subscribers, is the main component of the Agvent System and is comprised
of a network of distributed Agvent Servers. In a server topology which contains
cycles, additional care must be taken to avoid cyclic routing. In order to simplify
implementation issues, only acyclic topologies are considered in this project.

The entire Agvent system model is built under the assumption that the node/server
architecture must be kept as simple and flexible as possible. Routing for instance, is
agvent specific and not node/server specific. In this way, different agvents can
execute different selection algorithms simultaneously on the same server. The Agvent
Server, on the other hand, is responsible for storing subscription information in its
knowledge base and provides an Agvent Operation Platform where agvents can
migrate to and pursue their execution. The inner structure of an Agvent Server is
depicted in Figure 2. Every Agvent Server processes incoming subscription and
advertisement requests according to a protocol, which includes their propagation to
adjacent/neighbor Agvent Servers. An Agvent Server communicates with publishers,
subscribers and other Agvent Servers through the set of methods shown in Figure 2.
Agvents move themselves to adjacent Agvent Servers and/or subscribers similarly to
reach target nodes.

Fig. 2. Inner Structure of an Agvent Server

Agvent System differs from other distributed event systems with its distinct
characteristics that are described below.
− Autonomous Events: Events are not viewed as simple messages. On the contrary,

they are represented as mobile agents that have their own goals, beliefs and
behaviors that they acquire at creation. This approach adds to the flexibility of the
system and reduces the load and complexity of agvent servers as well.

− Self-Routing Agvents: Agvents are self-routing, that is, they are responsible for
determining their own paths through the network, utilizing a minimal set of
facilities provided by Agvent Servers. Agvent Servers in the network support
incoming agvents by providing a simple, architecturally independent environment
for the receipt and execution of agvents.

Dispatching Mechanism of an Agent-Based Distributed Event System 187

− Agvent Based Subscription: Subscribers register on agvent types. For example, a
subscriber can register on an agvent, which is an instance of “BookAgvent” class,
specifying certain constraints based on its advertised attributes and behaviors.

− Information Hiding: The published agvent itself searches the knowledge base of
the agvent server by talking with the Agvent Manager Agent, selects the
registered subscribers, clones itself and sends each agent clone to a subscriber on
the selected list. Therefore, an agvent server has no access to the content of the
published event data, which simplifies its role and consequently facilitates the
server development process. Information hiding also meets requirements of certain
applications where confidentiality of event data is essential.

− User/Application defined agvent types: A publisher creates its own agvent type
and declares its properties and behavior through an advertisement message sent to
the Dispatch Service. Once an agvent type is announced on the Dispatch Service,
subscribers can register on agvents of that type.

2.1 Agvents

An agvent is a collection of code and data that migrates through the network, routing
itself at each node on its path towards its target node. Agvents are created by
publishers and sent out to subscribers over the Dispatch Service which is comprised
of a network of distributed nodes. Each node hosts an Agvent Server which provides
an operation platform for agvent execution, where incoming agvents execute their
code in order to achieve their prescribed objectives. An agvent carries its routing
procedure and routes itself at each node on the path toward a node of interest. To
perform routing, an agvent communicates with Agvent Manager Agent (AMA)
(Figure 2), using FIPA Agent Communication Language [5] in order to obtain the
required information from the knowledge base of the Agvent Server.

After receiving the required information from AMA, an agvent may clone itself to
create new agvents to be sent out to other Agvent Servers or subscribers on the
network. Thus, an agvent can eventually generate multiple agvents, even though it
starts out as a single one.

class BookAgvent extends Agvent
{ private String Author;

private String Name;
private float[] Dimensions ;
private String Publisher;
private Date Publish ;
private int ISBN;
private float ListPrice;
private boolean ReferenceContains(String AuthorName) {…}
private boolean TOCContains(String topic) {…}
privatefloat WholesalePrice(int amount,String destination) {…}
………
……… }

Fig. 3. Class definition of BookAgvent

The following is a sample scenario, an event which involves the introduction of a
new product. A publishing house wishes to announce a new book to interested

188 O.K. Sahingoz and N. Erdogan

subscribers, according to their subscription criteria. It first creates the class for an
agvent, namely BookAgvent (see Figure 3), which contains only the necessary
information for subscribers, however restricting access to detailed information of the
book from both servers and subscribers of the system. Next, the publishing house
creates an agvent instance of BookAgvent, embeds the necessary information of this
new book into this agvent, and publishes this agvent to the system.

2.2 Life Cycle of an Agvent

An agvent has a four-stage execution life cycle on different nodes of the Agvent
System. Flow of transition between stages, depicted in Figure 4, is as the following:
(1) being created on a publisher, (2) migrate to an agvent server/subscriber of interest,
(3) execution upon a target subscriber and (4) disposal upon completion of mission.

Fig. 4. Life Cycle of an Agvent

Publishers which decide on what events are observable and how to describe them
as agvents. The life cycle of an agvent starts with its being created by a publisher on
the observation of an event. Next, it routes itself to an Agvent Server where it
identifies its target set of subscribers and a path which will take it to its destination
nodes. At this point, new agvents may be spawned to be sent to different target nodes.
After arrival on a target, actually a subscriber node, the agvent carries out a
prespecified set of actions to reach its goals, and upon completion, disposes itself.

3 Dispatching Mechanism of Agvent System

The Agvent System implements three different dispatching mechanisms for different
entities of the system, namely advertisements, subscriptions and agvents. To carry out
the dispatching process correctly, each Agvent Server maintains a knowledge base to
keep information to be used to route incoming request messages to local clients or
neighboring Agvent Servers, the decision being based on the content of the message.

1 2 4
Creation

Migrate
to AS

Migrate
to AS

Migrate
to Si

Execute

Disposal

AS: Agvent Server
Si : Subscriber

Operations on a
Publisher

Operations on
Agvent Server

Operations on a
Subscriber

Execute

3

Dispatching Mechanism of an Agent-Based Distributed Event System 189

3.1 Dispatching of Advertisements

Every publisher knows of an Agvent Server to which it issues an advertisement
request to advertise intent to publish a particular kind of agvent and make it visible to
all subscribers of the system. An advertisement describes the properties of the
relevant agvent, containing not only the attributes (with necessary descriptions) but
also its behaviors that are to be exposed to subscribers. By getting this information, a
subscriber can register on an agvent with constraints on these properties, as predicates
asserted on the attributes or on the return values of behaviors on a list of input
parameters prespecified by the subscriber.

Returning to the previous scenario, after developing the “BookAgvent” class, the
publishing house issues an advertisement message for this agvent and sends it to the
Dispatch Service. This message is structured as an instance of “Advertisement” class,
which contains the necessary data structures to store information on filterable
attributes and behaviors of the agvent, as depicted in Figure 5. The Dispatch Service
distributes this message to all its constituent Agvent Servers through flooding and
accepts subscriptions on this advertisement.

Fig. 5. An Advertisement of a BookAgvent

When an Agvent Server receives an advertisement, it stores the content of the
message in an advertisement table along with the addresses of both the Agvent Server
from which it received the message and the publisher node, that is, the owner of the
advertisement. Next, it forwards the message to adjacent Agvent Servers. Thus, with
this approach, the advertisement message is propagated to all Agvent Servers on the
Dispatch Service and a trail of backward pointers from Agvent Servers to the
publisher node is created. Consequently, it becomes possible to reach the publisher of
the advertisement from any Agvent Server when successive locations on this trail are
visited. Subscriptions are also dispatched over these routes created during the
advertisement process. When a subscriber asks for the whole advertisement list or
enquires a specific type of advertisement, the Agvent Server replies with the
requested information and waits for subscriptions. Advertisements remain in effect
until they are cancelled by a call to unadvertise.

Author : String “Description”
Name : String “Description”
Pages : int “Description”
Dimensions : float[3] “Description”
Publisher : String “Description”
Publish Date : Date “Description”
ISBN : int “Description”
ListPrice : float “Description”

ReferenceContains(AuthorName) : boolean (String) “Descriptions”
TOCContains(topic) : boolean (String) “Descriptions”
WholesalePrice(amount,destination) : float (int,String) “Descriptions”

Filterable Attributes of
BookAgvent with
necessary descriptions

Filterable Behaviors
of BookAgvent with
necessary behavior
and parameter
decriptions

190 O.K. Sahingoz and N. Erdogan

3.2 Dispatching of Subscriptions

Subscriptions express the interests of applications/subscribers. With a subscription, an
application can instruct the Dispatch Service its request to receive a certain agvent
type through a filtering function. Setting a filter with a subscription means defining a
predicate that is stored in the Agvent Server and that will be evaluated by every
incoming agvent of that type. It is of fundamental importance to define the domain of
these operations. In other words, it is crucial to determine

• which attributes of an agvent are filterable for the evaluation of subscriptions
• what kinds of primitive predicates and connectors are available (such as “>,

>=,<,<=,!,!=,=…etc”).
Agvent system uses the Subscription class which contains the necessary data

structures to describe constraints on both attributes and behaviors of an agvent. A
sample subscription for the previously advertised BookAgvent may contain the
constraints depicted in Figure 6.

Fig. 6. A Subscription sample on BookAgvent

Since subscriptions define the potential targets of agvents, they are used by the
Dispatch Service to create a routing table which is used by agvents for self-routing.
Subscriptions can be matched repeatedly until they are cancelled by an unsubscribe
call. With this policy, an agvent selects a target node and moves itself there only if an
interested subscriber resides on that node. However, such a policy requires every
subscription to be propagated to every Agvent Server in the system.

When a subscription message reaches an Agvent Server, either from a subscriber
client or from another Agvent Server, the server adds the new subscription
information to its routing table in the knowledge base and propagates that
subscription message to adjacent servers from which it has received the advertisement
of the particular type of agvent the subscription is on. Every subscription is stored and
forwarded from the originating Agvent Server to all other Agvent Servers in the
network.

3.3 Dispatching of Agvents

An agvent is a collection of code and data that migrates through the network, routes
itself at each node on the path, and executes on nodes of interest. An agvent
determines its own path through the network, utilizing the minimal set of facilities
provided by nodes. A key challenge in this model is the ability to discover target
nodes, and to route itself to them. An agvent specifies target nodes with matching
subscribers after applying filtering specifications. The next step requires the migration

Author =” Valentina Plekhanova”
Pages > 200
Publish Date > “January 1, 200”2

ReferenceContains(“Alonso, E.”) == true
WholesalePrice(1000, “Istanbul”) < $150.000

Constraints on attributes of BookAgvent

Constraints on behaviors of BookAgvent

Dispatching Mechanism of an Agent-Based Distributed Event System 191

of clones of the agvent to each target. This execution cycle is completed in the
following steps.
− First, an agvent has to be admitted at the destination node. A launcher task at an

agvent server is to continuously receive agvents arriving from other servers or
publishers.

− Second, upon acceptance, this agvent is activated on Agvent Operation Platform
and scheduled for execution as a thread. During its execution the agvent may yield
the processor and wait for data from Agvent Manager Agent and the routing
behavior of an agvent chooses target nodes(agvent servers or subscribers). The
execution performed at each step may differ based on peculiar properties of that
node.

− Third, when the agvent completes its execution on the current node, it clones itself
for transport to each of these target nodes. Agvent Manager Agent sends these
clones to the destinations as dictated by agvent’s behaviors.

4 Conclusion

This paper presents a new model for agent based distributed events systems, the
Agvent System, which combines the advantages of publish/subscribe communication
and mobile agents into a flexible and extensible distributed execution environment.
The major novelty of the model is that an event is represented as a mobile intelligent
agent, an agvent, which is treated as a first class citizen of the system and given
autonomy and mobility features to select and travel between system components.
Agvents have their own identity and behavior which permit them to actively navigate
through the underlying dispatching system, and carry out various tasks at the nodes
they visit. Agvents operate independently of the sending application, therefore
removing any dependencies with the application. The ‘intelligence’ is in the agvents
themselves rather than in the network. We think the new model will serve as an
effective choice for several information-oriented applications, such as e-commerce or
information retrieval, for its benefits stated above. Currently a prototype of system is
being implemented in Java.

References

1. Bacon, J., Moody K., Bates J., Hayton R., Ma C., Mcneil A., Seidel O., and Spiteri M.
“Generic support for distributed ap-plications.” IEEE Computer 33, 3 (2000), 68–76.

2. Carzaniga, A. and Wolf, A. "Content-based Networking: A New Communication
Infrastructure." NSF Workshop on Infrastructure for Mobile -Wireless Systems. Oct., 2001.

3. Mühl, G. Large-scale content-based publish/subscribe systems. PhD thesis, Darmstadt
University of Technology, September 2002.

4. Sahingoz, O. K. and Erdogan, N. "AGVENT: Agent Based Distributed Event System",
accepted for presentation in 30th Conference on Current Trends in Theory and Practice of
Computer Science, (SOFSEM-2004), Czech Republic, 2004

5. FIPA Agent Communication Language Specifications. 2000. HTML,
http://www.fipa.org/repository/aclspecs.html.

	1 Introduction
	2 Agvent System
	2.1 Agvents
	2.2 Life Cycle of an Agvent

	3 Dispatching Mechanism of Agvent System
	3.1 Dispatching of Advertisements
	3.2 Dispatching of Subscriptions
	3.3 Dispatching of Agvents

	4 Conclusion
	References

