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Abstract. In this paper we study the problem of determining three-
dimensional orientations for noisy projections of randomly oriented iden-
tical particles. The problem is of central importance in the tomographic
reconstruction of the density map of macromolecular complexes from
electron microscope images and it has been studied intensively for more
than 30 years.
We analyze the computational complexity of the problem and show that
while several variants of the problem are NP -hard and inapproximable,
some restrictions are polynomial-time approximable within a constant
factor or even solvable in logarithmic space. The negative complexity
results give a partial justification for the heuristic methods used in the
orientation search, and the positive complexity results have some positive
implications also to a different problem of finding functionally analogous
genes.

1 Introduction

Structural biology studies how biological systems are built. Especially, determin-
ing three-dimensional electron density maps of macromolecular complexes, such
as proteins or viruses, is one of the most important tasks in structural biology
[1].

Standard techniques to obtain three-dimensional density maps of such parti-
cles (at atomic resolution) are by X-ray diffraction (crystallography) and nuclear
magnetic resonance (NMR) studies. However, X-ray diffraction requires that the
particles can form three-dimensional crystals and the applicability of NMR is
limited to relatively small particles [2]. For example, there are many well-known
viruses that do not seem to crystallize and are too large for NMR techniques.

A more flexible way to reconstruct density maps is offered by cryo-electron
microscopy [1,3]. Currently the resolution of the cryo-electron microscopy re-
construction is not quite as high as resolutions obtainable by crystallography or
NMR but it is improving steadily.

Reconstruction of density maps by cryo-electron microscopy consists of the
following subtasks [1]:
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Specimen preparation. A thin layer of water containing a large number of
identical particles of interest is rapidly plunged into liquid ethane to freeze
the specimen very quickly. Quick cooling prevents water from forming regular
structures. Moreover, the particles get frozen in random orientations in the
iced specimen.

Electron microscopy. The electron microscope produces an image represent-
ing a two-dimensional projection of the mass distribution of the iced spec-
imen. This image is called a micrograph. Unfortunately the electron beam
of the microscope rapidly destroys the specimen so getting accurate images
from it is not possible.

Particle picking. Individual projections of particles are extracted from the
micrograph. The number of projections obtained may be thousands or even
more.

Orientation search. The orientations (i.e., the projection directions for each
extracted particle) for the projections are determined. There are a few heuris-
tic approaches for finding the orientations.

Reconstruction. If the orientations for the projections are known then quite
standard tomography techniques can be applied to construct the three-
dimensional electron density map from the projections.

In this paper we study the computational complexity of the orientation search
problem which is currently the major bottleneck in the reconstruction process.
On one hand we show that several variants of the task are computationally
very difficult. This justifies (to some extent) the heuristic approaches used in
practice. On the other hand we give exact and approximate polynomial-time
algorithms for some special cases of the task that are applicable e.g. to the
seemingly different task of finding functionally analogous genes [4].

The rest of this paper is organized as follows. In Section 2 the orientation
search problem is described. Section 3 analyzes the computational complexity of
the orientation search problem. The paper is concluded in Section 4.

Due to the page limitations the proofs of theorems and further details appear
in the full version [5].

2 The Orientation Search Problem

A density map is a mapping D : R
3 → R with a compact support. An orientation

o is a rotation of the three-dimensional space and it can be described e.g. by a
three-dimensional rotation matrix. A projection p of a three-dimensional density
map D to orientation o is the integral

p (x, y) =
∫ ∞

−∞
D

(
Ro [x, y, z]T

)
dz

where Ro is a rotation matrix, i.e., the mass of D is projected on a plane passing
through the origin and determined by the orientation o.

Based on the above definitions, the orientation search task is, given projec-
tions p1, . . . , pn of the same underlying but unknown density map D to find good
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orientations o1, . . . , on for them. There are several heuristic definitions of what
are the good orientations for the projections.

One possibility is to choose those orientations that determine a good density
map although it might not be obvious what a good density map is nor how it
should be constructed from oriented projections. A standard solution is to com-
pare how well the given projections fit to the projections of the reconstructed
density map. This kind of definition of good orientations suggests an Expecta-
tion Maximization-type procedure of repeatedly finding the best model for fixed
orientations and the best orientations for a fixed model, see e.g. [6,7,8]. Due
to the strong dependency on the reconstruction method, it is not easy to say
analytically much (even whether it converges) about this approach in general.
In practice, this approach to orientation search works successfully if there is an
approximate density map of the particle available to be used as an initial model.

The orientations can be determined also by common lines [9]: Let pi and pj

be projections of a density map D onto planes corresponding to orientations oi

and oj , respectively. All one-dimensional projections of D onto a line passing
through the origin in the plane corresponding to the orientation oi (oj) can be
computed from the projection pi (pj); this collection of projections of pi (pj) is
also called the sinogram of pi (pj). As the two planes intersect, there is a line
for which the projections of pi and pj agree. This line (which actually is a vector
since the one dimensional projections are oriented, too) is called the common
line of pi and pj .

If the projections are noiseless then already the pairwise common lines of
three projections determine the relative orientations of the projections in three-
dimensional space uniquely (except for the handedness) provided that the possi-
ble symmetries of the particle are taken into account. Furthermore, this can be
computed by only few arithmetic and trigonometric operations [10].

However, the projections produced by the electron microscope are extremely
noisy and so it is highly unlikely that two projections have one-dimensional
projections that are equal. In this case it would be natural to try to find the best
possible approximate common lines, i.e., a pair of approximately equal rows from
the sinograms of the two projections. Several heuristics for the problem have been
proposed [3,10,11,12,13]. However, they usually assume that the density map
under reconstruction is highly symmetric which radically improves the signal-to-
noise ratio. In the next section we partially justify the use of heuristics by showing
that many variants of the orientation search problem are computationally very
difficult.

3 The Computational Complexity of Orientation Search
Problem

In this section we show that finding good orientations using common lines is com-
putationally very difficult in general but it has some efficiently solvable special
cases. First, we consider the decision versions of the orientation search problem.
Second, we study the approximability of several optimization variants.
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We would like to point out that some of the results are partially similar to the
results of Hallett and Lagergren [4] for their problem Core-Clique that models
the problem of finding functionally analogous genes. However, our problem of
finding good orientations based on common lines differs from the problem of
finding functionally analogous genes, e.g., by its geometric nature and by its
very different application domain. Furthermore, we provide relevant positive
results for finding functionally analogous genes: we describe an approximation
algorithm with guaranteed approximation ratio of β (2 − o(1)), if the distances
between genes adhere to the triangle inequality within a factor β.

3.1 Decision Complexity

As mentioned in Section 2, the pairwise common lines cannot be detected reli-
ably when the projections are very noisy. A natural relaxation is to allow several
common line candidates for each pair of projections. In this section we study the
problem of deciding whether there exist common lines in given sets of pairwise
common lines that determine consistent orientations. We show that some formu-
lations are NP -complete in general but there are nontrivial special cases that
are solvable in nondeterministic logarithmic space. Due to the page limitations
the proofs and further details appear in the full version [5].

The common lines-based orientation search problem can be modeled at a
high level as the problem of finding an n-clique from an n, m-partite graph
G = (V1, . . . , Vn, E), i.e., a graph consisting independent sets V1, . . . , Vn of size
m.

Problem 1 (n-clique in an n, m-partite graph). Given an n, m-partite graph G =
(V1, . . . , Vn, E), decide whether there is an n-clique in G.

Problem 1 can be interpreted as the orientation search problem in the fol-
lowing way: each group Vi describes the possible orientations of the projection
pi and each edge connecting two oriented projections says that the projections
in the corresponding orientations are consistent with each other.

On one hand already three different orientations for each projection can make
the problem NP -complete:

Theorem 1. Problem 1 is NP -complete if m ≥ 3.

On the other hand the problem can be solved in nondeterministic logarithmic
space if the number of orientations for each projection is at most two:

Theorem 2. Problem 1 is NL-complete if m = 2.

The formulation of the orientation search problem as Problem 1 seems to miss
some of the geometric nature of the problem. As a first step toward the final
formulation, let us consider the problem of finding a constrained line arrange-
ment, the constraint being that any two lines of the arrangement are allowed to
intersect only at a given set of points, each such set being of size ≤ l:
Problem 2 (l-constrained line arrangement). Given sets Pij ⊂ R

2, |Pij | ≤ l, 1 ≤
i < j ≤ n, decide whether there exist lines L1, . . . , Ln in R

2 such that Li and Lj

intersect only at some p ∈ Pij for all 1 ≤ i < j ≤ n.
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This problem has some interest of its own since line arrangements are one of
the central concepts in computational and discrete geometry [14]. If we require
that the lines are in general position, i.e., that they are not parallel nor they
intersect in same points, then we get the following hardness result:

Theorem 3. Problem 2 for lines Li in general position is NP -complete if l ≥ 9.

The result can be slightly improved if we allow also parallel lines in the
arrangement:
Theorem 4. Problem 2 is NP -complete if l ≥ 6.

However, the orientation search is not about arranging lines on the plane but
great circles on the (unit) sphere S =

{
(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1
}

as the
orientations and the great circles are obviously in one-to-one correspondence.
Thus, we should study the great circle arrangements:

Problem 3 (l-constrained great circle arrangement). Given sets Pij ⊂ S+ =
{(x, y, z) ∈ S : z ≥ 0} , |Pij | ≤ l, 1 ≤ i < j ≤ n, decide whether there exist
great circles C1, . . . , Cn on S such that Ci and Cj intersect on S+ only at some
p ∈ Pij for all 1 ≤ i < j ≤ n.

It can be shown that the line arrangements and great circle arrangements
are equivalent through the stereographic projection [14]:
Theorem 5. Problem 3 is as difficult as Problem 2.

Still, our problem formulation is lacking some of the important ingredients
of the orientation search problem: it is not possible to express at this stage the
common line candidates by giving the allowed pairwise intersection points on the
sphere S. Rather, one can represent a common line only in the internal coordi-
nates of the two great circles that correspond to the two projections intersecting.
Each coordinate is in fact an angle giving the rotation angle of the common line
on the projection. Hence the representation is a pair of angles:

Problem 4 (locally l-constrained great circle arrangement on sphere). Given sets
Pij ⊂ [0, 2π) × [0, 2π), |Pij | ≤ l, 1 ≤ i < j ≤ n, decide whether there exist great
circles C1, . . . , Cn on S such that Ci and Cj intersect only at some p ∈ Pij for
all 1 ≤ i < j ≤ n, where p defines the angles of the common line on Ci and Cj .

Also this problem can be shown to be equally difficult to decide:
Theorem 6. Problem 4 is NP -complete.

Thus, deciding whether there exist consistent orientations seems to be diffi-
cult in general.

3.2 Approximability

As finding a consistent orientation for the projections is by the results of Sec-
tion 3.1 difficult, we should consider also orientations that may cover only a large
subset of the projections or resort to common lines that are as good as possible.
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A simple approach to allow errors in solutions is look for large cliques in the
n, m-partite graph G = (V1, . . . , Vn, E) instead of exact n-cliques. In the world
of orientations this means that instead of finding consistent orientations for all
projections we look for consistent orientations for as many projections as we are
able to and neglect the other projections.

Containing a clique is just one example of a property a graph can have. Also
other graph properties might be useful. Thus, we can formulate the problem in
a rather general form as follows:

Problem 5 (Maximum subgraph with property P in an n, m-partite graph). Given
an n, m-partite graph G = (V1, . . . , Vn, E), find the largest V ′ ⊂ V1 ∪ . . . ∪ Vn

such that the induced subgraph satisfies the property P and |V ′ ∩ Vi| ≤ 1 for all
1 ≤ i ≤ n.

This resembles the following fundamental graph problem in combinatorial
optimization and approximation algorithms:
Problem 6 (Maximum subgraph with property P [15]). Given a graph G =
(V, E), find the largest V ′ ⊆ V such that the induced subgraph satisfies the
property P .

It is not very difficult to see that the two problems are equivalent:
Theorem 7. Problem 5 is as difficult as Problem 6.

Thus, Problem 5 is very difficult w.r.t. several properties. For example, due to
Theorem 7, finding the maximum clique from the n, m-partite graph cannot be
approximated within ratio n1−ε for any fixed ε > 0 [16]. Note that the approx-
imation ratio n can be achieved trivially by choosing any of the vertices in G
which is always a clique of size 1.

In practice the techniques for finding common lines or common line candi-
dates actually produce distances between all possible intersections of two projec-
tions. Thus, we could assume that there is always at least one feasible solution
and study the following problem:

Problem 7 (Minimum weight n-clique in a complete n, m-partite graph). Given
a complete n, m-partite graph G = (V1, . . . , Vn, E) and a weight function w :
E → N, find V ′ ⊂ V1 ∪ . . . Vn such that the weight

∑
u,v∈V ′,u �=v w ({u, v}) is

minimized and |V ′ ∩ Vi| ≤ 1 for all 1 ≤ i ≤ n.

Unfortunately, it turns out that in this case the situation is extremely bad:
Theorem 8. Problem 7 with m ≥ 3 is not polynomial-time approximable within
2nk

for any fixed k > 0 if P 	= NP .

When there are only two vertices in each group the problem admits a constant
factor approximation ratio but no better:
Theorem 9. Problem 7 is APX-complete if m = 2.

An easier variant of Problem 7 is the case where the edge weights admit
triangle inequality within a factor β, i.e., for all edges {t, u}, {t, v} and {u, v} it
holds

w ({t, u}) ≤ β (w ({t, v}) + w ({u, v})) .
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A good approximation of the lightest clique can be found by finding the min-
imum weight star that contains one vertex from each group Vi. (The algorithm is
described in the full version of this paper [5].) This gives constant-factor approxi-
mation guarantees and the approximation is stable (for details on approximation
stability, see [17]):

Theorem 10. Problem 7 is polynomial-time approximable within β (2 − o(1)) if
the edge weights satisfy triangle inequality within factor β.

This algorithm might not be applicable in orientation search as there seems to
be little hope of finding distance functions (used in selecting the best common
lines) satisfying even the relaxed triangle inequality for the noisy projections.
However, in the case of finding functionally analogous genes this is possible
since many distance functions between sequences are metric. Thus, the algorithm
seems to be very promising for that task.

Another very natural relaxation of the original problem is to allow small
changes to common line candidates to make the orientations consistent:

Problem 8 (Minimum error l-constrained line arrangement). Given sets Pij ⊂
R

2, |Pij | ≤ l, 1 ≤ i < j ≤ n, find lines L1, . . . , Ln in R
2 that minimize the sum of

distances minpij∈Pij |pij − p̂ij |q where p̂ij is the actual intersection point of lines
Li and Lj and q > 0.

Theorem 11. Problem 8 with l ≥ 6 is not polynomial-time approximable within
2nk

for any fixed k > 0 if P 	= NP .

4 Conclusions

In this paper we have shown that some approaches for determining orientations
for noisy projections of identical particles are computationally very difficult,
namely NP -complete and inapproximable.These results justify (to some extent)
the heuristic approaches widely used in practice.

On the bright side, we have been able to detect some polynomial-time solv-
able special cases. Also, we have described an approximation algorithm that
achieves the approximation ratio β (2 − o(1)) if the instance admits the triangle
inequality within a factor β. It has promising applications in search for function-
ally analogous genes. As a future work we wish to study the usability of current
state of art in heuristic search to find reasonable orientations in practice. This
is very challenging due to the enormous size of the search space. Another goal is
to analyze the complexity of other approaches for determining the orientations
for the projections.
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