
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 287–294, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Parallel Crawling Schema Using Dynamic Partition

Shoubin Dong, Xiaofeng Lu, and Ling Zhang

Network Research Center, South China University of Technology,
510640 Guangzhou, China

{sbdong,xflv,ling}@scut.edu.cn
Tel: (8620)87110014
Fax: (8620)87110019

Abstract. Parallel crawling is a key issue for search engine. In this paper we
propose a parallel crawling schema based on dynamic partition, in order to fully
utilize the available resources and achieve the best of load balance. The
crawling schema is evaluated based on parallel metrics and performance of load
balance. A prototype system built on Grid middleware has been constructed to
demonstrate its efficiency and flexibility.

1 Introduction

As the size of the web is growing explosively, web search engines are becoming
increasingly important as the primary means to retrieve information on the Internet.
Most search engines use parallel web crawlers to retrieve large collections of web
pages, in order to achieve a maximized download rate. However the competition
among parallel crawling may result in redundant crawling and wasted resources.

 Several researches have been conducted on parallel and distributed crawlers [1-7].
Some features of Google have been introduced in [1], where the crawling mechanism
is described as a two-stage procedure. First, a URL server sends URLs to several web
crawlers, where pages are fetched in parallel. Second, the downloaded pages are sent
to the a central indexer, in which new URLs are parsed out for PageRank computing,
and then forwarded to the URL server for next crawling. UbiCrawler[2] is a scalable
fully distributed web crawler, in which each agent/robot is responsible for
approximately the same number of URLs using Identifier–Seeded Consistent Hashing
to achieve load balancing. WebRace[3] is a java-implemented distributed crawler, to
collect, annotate and disseminate information from heterogeneous Internet source and
protocols. Shkapenyuk and Suel [4] gave a detailed description of the architecture of a
distributed crawler. It primarily discusses about the I/O and network efficiency
aspects of a crawling system and the scalability issues in terms of crawling speed and
number of participating nodes. Hash function is engaged to partition the space of all
possible web URLs. Walker [5] used MPI and genetic programming to simulate the
results for parallel pseudo-search engine. Travatore [6] is a kind of platform-
independent distributed crawler, of which an agent is consisted of three elements:
store, frontier and controllers. In [7], Cho proposed a general parallel crawling
structure, and evaluated some crawling schema based on static partition according to
the parallel metrics.

288 S. Dong, X. Lu, and L. Zhang

In our work, we propose a new parallel crawling schema based on dynamic partition
mechanism. Based on the dynamic partition, we are able to extend the parallel crawler
to run on grid nodes, thus to construct a high performance, fault tolerant and scalable
crawler in grid environment.

2 Parallel Crawling Architecture

The parallel crawling architecture, shown in figure 1, is composed of agents and
coordinators. An agent is a grid node, it performs its download task by running
several threads, each of which is called C-proc. Each C-proc is dedicated to the visit
of a single site. We make sure that different C-proc visit different sites at the same
time, so that each site is not overloaded by too many requests. A coordinator is to
coordinate the behavior of the agents. It may be also an agent.

C-proc Map

Agent Status Info

Coordinator

URL Queue

Meta-info Extractor

Pr i mar y St or age
(Local Di sk/ Memor y)

Agent

Secondar y St or age
(Cent r al Dat abase)

Mornitor

World Wide Web

Transmitter

Meta-info

URL Extractor

Convertor

URL Queue

C-proc

Data Fetcher

Meta-info

URL Extractor

Convertor

URL Queue

C-proc

Data Fetcher

Fig. 1. The Parallel Crawling Architecture

Before the crawler starts the crawling procedure, a number of seed URLs, which are
grouped by site names and ordered by prior knowledge, if available, have to be set to
the "URL Queue" in the coordinator. The monitor collects the status (such as CPU
usage, memory usage, disk size, network bandwidth, etc.) of every agent, and save the
information in the "Agent Status Info" of coordinator. When the crawler gets started,
the coordinator assigns the number of available C-proc’s groups of seed URLs to

A Parallel Crawling Schema Using Dynamic Partition 289

appropriate C-proc’s, based on agent status information and our dynamic partition
algorithm, and uses "C-proc Map" to keep the information about which site each C-
proc is responsible for at present. Meanwhile, the "Meta-Info Extractor" collects
statistics of the formerly downloaded objects in the central database, and distributes
them to the corresponding C-proc’s, so that C-proc can determine whether pages
within the site need to be downloaded. C-proc keeps this statistics in its "Meta-Info".

Objects are retrieved by "Data Fetcher" and then sent to "Convertor", where objects
including web pages and objects of other formats are converted into XML formats
and saved to the primary storage – agent’s local memory or disk, which is supervised
by a "Transmitter" located in the same agent. When the number of documents in the
primary storage grows to certain degree, all data in the primary storage would be
packed and sent to the central database through the transmitter. Meanwhile "URL
extractor" extracts new URLs from the downloaded objects and sends those that are
local to C-proc’s assigned site to the "URL queue" of C-proc, while sends others back
to the "URL queue" in the coordinator. Meanwhile "URL extractor" extracts new
URLs from the downloaded objects and sends those that are local to C-proc’s
assigned site to the URL queue of C-proc, while sends others back to the "URL
queue" in the coordinator. When some C-proc’s URL queue is empty, it asks the
coordinator for new assignment. These steps would repeat until there is no URL in the
URL-queues of both coordinator and C-proc’s.

3 Dynamic Partition Algorithm

The web can be partitioned in several ways; in particular, the partition can be obtained
from URL-based hash, site-based hash or hierarchically by domain name. The key
feature of our model is to conduct dynamic task assignment. This is currently done by
means of partition algorithm based on two parameters: size of a site and capacity of a
C-proc. Size of a site may be measured by the number of objects the site holds or the
time elapse of last full download of all objects in this site. The size is estimated after
the first download, and will be re-estimated after each download. Capacity of a C-
proc is proportional to the available resources of an agent. The crawling related
resources include CPU, memory, and storage and network bandwidth. According to
our design, the partition of URL queues is implemented according to algorithm 3.1.

Algorithm 3.1 Dynamic partition algorithm

Input: S is an ordered set of sites according to their sizes
Input: P is an ordered set of C-proc’s according to their capacities
Required: M is the mapping list of a pair set (site, C-proc)
Required: A is the list of all agents
Required: U is a list of global URL-queue group by sites, managed by coordinator
Required: URL-queue for each C-proc, maintained by each C-proc
1: Initial assignment: p0 ← s0 {assign s0 to p0},p1 ←s1,….,
2: add pair (s0,p0),(s1,p1)… to the mapping list M;
3: delete the assigned sites from S
4: while |S| > 0 do

290 S. Dong, X. Lu, and L. Zhang

5: for all pi � P, do /* Check for the tasks of C-proc’s
6: if the task of this C-proc pi has been finished, do
7: delete pair (sk, pi) from the mapping list M
8: assign pi ← s0, delete s0 from queue S, add pair (s0,pi) to list M
9: end if
10: if the C-proc pi found some new URLs not local to its given site sj, do
11: send the URLs to URL-queue of coordinator U
12: end if
13: end for
14: for all ai � A, do
15: if the agent ai has failed, do
16: for all C-proc pi running on this agent, do
17: add sk to the head of list S , where (sk, pi) is a pair value in M
18: delete pair (sk, pi) from the mapping list M
19: end for
20: end if
21: end for
22: if some new agent is available, do
23: start several C-proc on this agent
24: add these C-proc to list P, re-order P according to their capacities
25: end if
26: Order the list of global URL-queue U according to their sites
27: for all new URLs ui�U, suppose the site of ui is sk, do
28: if (sk, pi) exists in the lists of M, do
29: add new URLs ui to the URL-queue of C-proc pi

30: else if sk is a new discovered site, thus not belonging to S, do
31: add sk to the tail of list S
32: end if
33: end for
34: end while

It should be mentioned that (1) The assignment of sk → pi means that all URLs of
the site sk are put into URL-queue of C-proc pi; (2) Step 10-12 indicates that the
hyperlinks that are not local to the given site of C-proc are sent to coordinator, then
dispatched to the right C-proc by coordinator (step 28-29) or saved in the URL-queue
of coordinator for new assignment; (3) The agents is allowed to be dynamically
changed in the running. New agents may participate in tasks, while crash agents may
be left out.

It is obvious that this kind of assignment may achieve the optimized results because
it fully utilizes the available resources. We will discuss this in detail by experiment in
section 5.

4 Implementation Issues

To achieve our design goals, we propose a four layers’ implementation architecture as
shown in figure 2:

A Parallel Crawling Schema Using Dynamic Partition 291

− Storage layer: to perform the distributed and parallel file management;
− Scheduling layer: to act as the status monitor and task scheduler;
− Communication layer: to coordinate the data transfer from primary storage to

secondary storage and the communication between agents and coordinator;
− Application layer: to perform the tasks of data gathering.
We develop our system based on Globus Toolkit (http://www.globus.org/) and Sun

Grid Engine (http://wwws.sun.com/software/gridware/sge.html). Agents and
coordinator exchange URLs and
control information by MPI
(Message Passing Interface). The
GridFTP of Globus is used to
transfer the large amount of data,
such as the data transfer from
primary storage to secondary
storage. Next we discuss two
main issues.

Task Scheduling. Sun Grid
Engine (SGE) is used to collect
the status of grid nodes, and
schedule the tasks running on the
nodes. Each "Execution Host"
acts as an agent, while "Master
Host" acts as a coordinator. When data gathering is started, the ordered tasks
according to prior knowledge are submitted to "Submit Host". Then the Master Host
begins to schedule the tasks according to the resources of all Execution Hosts and
SGE’s policies that may be configured by the system administrator. When the tasks
finish, the Execution Host may release the resources and Master Host will
automatically assign new tasks to it. In the running, an agent may join or leave freely.
Administration Host manages all register information of nodes, thus its role is the
"Monitor". Master Host may re-schedule the tasks according to the register
information and status of task execution. The system may also query SGE for the
status of all grid nodes, and save them in “Status Info” for further use. Thus, the
employee of SGE simplifies the implementation of the system.

Parallel File Management. Web crawler is a heavy I/O system, thus the file
management is a key factor that greatly affects its performance. To support dynamic
partition technique, we use a virtual central database to hold the data. This central
database can be disk array, SAN (Storage Area Network), or Data Grid [8].

At first the data is downloaded into the primary storage. After some time (depend
on the amount of data and available storage resources), the downloaded objects may
be compressed and transferred back to the secondary storage, namely, central
database. This kind of batch communication greatly improves the performance of I/O.

To avoid the overhead of the repeated downloading and analysis of documents that
have not been modified, the Data Fetcher uses cached object metadata stored in
“Meta-Info” to decide whether to download the documents that are already in the
cache. The content of this metadata is represented as <URL, Size, Last-modified>.
This metadata has been built into a hash table to facilitate the fast look-ups.
According to the partition algorithm 3.1, the assignment of task to C-proc is site
based. When one C-proc starts, the coordinator constructs a hash table of cache

Storage Layer

Scheduling Layer

Communication Layer

Application Layer

Globus (MPI, GridFTP)

Sun Grid Engine

Parallel File System

Agents Coordinator

Fig. 2. The Implementation Architecture

292 S. Dong, X. Lu, and L. Zhang

objects’ metadata in the site assigned to the C-proc, and sends this hash table to the C-
proc.

The “Data Fetcher” retrieves a URL from the URL-queue, make the HTTP
connection, retrieve the URL and analyze the HTTP-header of the response message,
and then access the hash table of cached object metadata and check if the URL
retrieved from the URL-queue is corresponding to the cached object metadata. If the
object is not in the cache or has been modified since last fetching, download the body
of the object and store it in primary storage, and send the object to “URL Extractor”
and “Convertor” for further processing.

Each C-proc only maintains the metadata of those cached objects, which are local to
its current assigned site. Instead of checking for the files on the disk, the Data Fetcher
checks the hash table of cached object metadata for the update information of objects.
The look-ups of hash table is very fast, thus greatly improves the performance.

Based on the parallel file management, the construction of the parallel crawler is
very scalable. All kinds of agents even the diskless workstations are allowed to
participate in the crawling task. To ensure batch communication, the C-proc on a
diskless agent may hold data in its memory other than local disk.

5 Evaluation

Evaluation model of parallel crawling schemes is described in details in [7]. Here we
discuss the parallel properties based on these four key metrics of parallel crawlers.

Overlap. Overlap of downloaded pages is defined as (N - I) / I. Here, N represents
the total number of pages downloaded by the overall crawler, and I represents the
number of unique pages downloaded by the overall crawler. Even in the presence of
faults, our model achieves overlap 0, which is optimal, because all C-proc’s download
the data according to the hash tables of cached objects, and the hash tables are
constructed from the updated central database.

Coverage. Coverage of all pages that ought to be downloaded is defined as I /U,
where U represents the total number of pages that the overall crawler has to
download, and I is the same as in the definition of Overlap. Theoretically, our model
achieves coverage 1, which is optimal, even when fault occurs.

If the objects stored locally on a crashed agent have not been transferred back into
central database, they will be fetched by the new C-proc on other agents responsible
for them. If the objects stored locally on a crashed agent have been transferred back
into central database, they will not be fetched by any new C-proc. Because when
coordinator starts to assign new task to a C-proc, it will send to the C-proc a hash
table of cached objects that belong to the site that the C-proc will be responsible for,
as stated in section 4.

Quality. Quality of downloaded pages is defined as │AN ∩PN │/│PN │, where
AN stands for the set of the most important N pages that an actual crawler would
download, and PN represents the set of the most important N pages that an ideal
crawler would download. Though our crawler uses a parallel per-site breadth-first
visit, without dealing with ranking and quality of page issues, it is proved that a
breadth-first single-process visit tends to visit high-quality pages first [2,9]. Thus this
kind of crawler tends to have a very good performance in quality.

A Parallel Crawling Schema Using Dynamic Partition 293

Communication overhead. Communication overhead is defined as L/N, where L
represents the total number of inter-partition URLs exchanged by the overall crawler,
and N is the same as in the definition of Overlap, represents the total number of pages
downloaded by the overall crawler. As it is stated in [2] that on the average every
page contains just one link to another site, we have that n crawled pages will give rise
to n URLs that must be potentially communicated to coordinator and other agents. By
the definition, the communication overhead is thus no more than 1, which means that
the crawler consumes very small network bandwidth for URL exchanges.

To evaluate the performance, we conducted an experiment to demonstrate the
advantage of dynamic partition methods. In this experiment, six C-proc’s were
managed to run on three grid nodes to do the data gathering tasks. They downloaded
totally 98585 pages from 30 different sites. We tested four partition methods: “Static-
Random” is to partition tasks by static partition, each C-proc was responsible for
nearly same number of sites; “Static-Size” is to partition sites according to their
objects numbers by static partition, each C-proc tries to be responsible for nearly the
same number of objects; “Dynamic-Random” is to partition tasks by dynamic
partition algorithm (Algorithm 3.1), the difference is that set of sites S is a random set;
“Dynamic-Size” is also to partition sites by dynamic partition algorithm, and S is an
ordered set of sites by their sizes. All C-proc’s cooperate together to finish exactly the
same tasks each time for different partitions. The workload contributed by one C-
proc, called “normalized workload”, is measured by the download time of this C-proc
divided by the sum of download time of all C-proc’s. We use normalized workload
rather than the crawling time, because the former is not affected by actual network
conditions and server performance of every site while the latter does. Thus it is a good
measure for the load balance.

Table 1. The normalization workload of C-proc’s under different partition methods

Partition C-Proc 1 2 3 4 5 6 stdev
Static-Randam 0.27 0.20 0.09 0.14 0.16 0.14 6.19%
Static-Size 0.15 0.23 0.14 0.16 0.14 0.18 3.44%
Dynamic-Random 0.17 0.14 0.20 0.19 0.16 0.14 2.50%
Dynamic-Size 0.17 0.16 0.17 0.18 0.16 0.16 0.82%

The experimental result is shown in Table 1. The standard variation (stdev) means
that the difference of normalized workload distributed in C-proc’s. It is observed that
the dynamic partition which achieve the smaller standard variation value, is very
effective to shorten the difference of download time among C-proc’s, thus provides
the best of load balance. And the results also demonstrated that the system would
achieve better load balance if there exists more prior knowledge.

6 Conclusion

In our work, we address the challenge of designing and implementing a parallel
crawler in the context of Grid middleware. We introduce a parallel crawling schema
designed using dynamic partition mechanisms to achieve high performance, fault-

294 S. Dong, X. Lu, and L. Zhang

tolerance and scalability, and evaluate our model with the criterions of parallel
crawler and performance of load balance. Further work will be included in the near
future, such as the employment of page ranking technique to improve the crawling
quality of the crawler.

References

1. S. Brin and L. Page: The anatomy of a large-scale hypertextual web search engine.
Computer Networks (1998) 107-117

2. P. Boldi, B. Codenotti, M. Santini, and S. Vigna: Ubicrawler: A scalable fully distributed
web crawler. In: Proc. AusWeb02. The Eighth Australian World Wide Web Conference
(2002)

3. D. Zeinalipour-Yazti, M. Dikaiakos: Design and Implementation of a Distributed Crawler
and Filtering Processor. In: A. Halevy, A. Gal (Eds.): Proceedings of the Fifth
International Workshop on Next Generation Information Technologies and Systems
(NGITS'2002). Lecture Notes in Computer Science, vol. 2382. Springer (2002) 58-74

4. V. Shkapenyuk and T. Suel: Design and implementation of a high-performance distributed
Web crawler. In: Proceedings of the 18th International Conference on Data Engineering
(ICDE'02). San Jose, CA (2002) 357-368

5. R. L. Walker: Dynamic load balancing model: Preliminary results for parallel pseudo-
search engine indexers/crawler mechanisms using MPI and genetic programming.
VECPAR 2000. Porto, Portugal (2000) 61-74

6. P. Boldi, B. Codenotti, M. Santini, and S. Vigna: Trovatore: Towards a highly scalable
distributed web crawler. In: Proc. of 10th International World Wide Web Conference.
Hong Kong, China (2001)

7. J. Cho and H. Garcia-Molina: Parallel crawlers. In: Proc. of the 11th International World–
Wide Web Conference (2002)

8. P. Andrews, T. Sherwin and B. Banister: A centralized data access model for grid
computing. In: Proceeding of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSS'03). San Diego, California (2003)

9. Marc Najork and Janet L. Wiener: Breadth-first search crawling yields high quality pages.
In: Proc. of 10th International World Wide Web Conference. Hong Kong, China (2001)

	1 Introduction
	2 Parallel Crawling Architecture
	3 Dynamic Partition Algorithm
	4 Implementation Issues
	5 Evaluation
	6 Conclusion
	References

