Dependence Analysis of Concurrent Programs Based on
Reachability Graph and Its Applications

Xiaofang Qi and Baowen Xu

Department of Computer Science and Engineering, Southeast University,

210096 Nanjing, China
{xfgi, bwxu}@seu.edu.cn

Abstract. This paper presents task synchronization reachability graph(TSRG)
for analyzing concurrent Ada programs. Based on TSRG, we can precisely deter-
mine synchronization activities in programs and construct a new type of pro-
gram dependence graph, TSRG-based Program Dependence Graph(RPDG),
which is more precise than previous program dependence graphs and solves the
intransitivity problem of dependence relation in concurrent programs in some
extent. Various applications of RPDG including program understanding, de-
bugging, maintenance, optimization, measurement are discussed.

1 Introduction

As concurrent systems are intensively used day by day, approaches to analyze, com-
prehend, test and maintain concurrent programs are imperatively demanded. Since
determining dependencies between statements is indispensable and crucial to such
activities, dependence analysis gradually attracts many researchers to make ef-
forts[1, 2]. Present studies on dependence analysis for concurrent programs are
mostly based on concurrent program flow graph. With the model, Krinke and Nanda
have computed dependence information of concurrent programs without synchroniza-
tion[3, 4]. Zhao and Cheng have considered effects of synchronization. However, they
analyzed synchronization activities merely by syntactical matching[1, 5]. This proc-
essing may produce spurious results leading to inaccurate dependence analysis in
most case because some of these synchronization activities are possible to happen
while some of them not. We have proposed an adapted MHP(May Happen in Paral-
lel) algorithm to increase the precision of determining synchronization activities[6].
Unfortunately, this approach is still conservative because MHP algorithm only calcu-
lates a conservative approximation of MHP statement pairs. Reachability graph, re-
cording all possible reachable states and describing executions of concurrent pro-
grams, includes various precise information related to dependence analysis[7, 8]. To im-
prove the accuracy of dependence analysis, we employ reachability graph as the model for
analysis and present a new method of dependence analysis for concurrent Ada programs.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 405-408, 2004.
© Springer-Verlag Berlin Heidelberg 2004

406 X. Qi and B. Xu

2 Task Synchronization Reachability Graph

A concurrent Ada program consists of one or more tasks. Each task proceeds independ-
ently and concurrently between the points(called by synchronization points) where it
interacts with other tasks by inter task synchronization activities during its lifecycle.
Statements, like new, entry call, accept, select, select-else, indicate such synchronization
activities. Each segment extracted between synchronization points is called a task
region.

Definition 2.1. Task synchronization graph(TSG) is a labeled directed graph G, =
<N, E, n,, F, L>, where N is the set of nodes corresponding to task regions, E = NxN,
is the set of edges representing synchronization activities, L is the mapping function,
n, is the initial node in which the statement begin appears, and F is the final nodes in
which the statement end appears.

For a given entry E, the starting and ending edges of the entry call(accept) are la-
beled with E.cs, E.ce(E.as, E.ae) or reduced as E.c, E.a for no accept body. If task s,
S, ..., S, are activated by parent task p in some activation, the edge is labeled with
(p>(s,, S, ..., s,)). The edge labeled with (m<(d,, d,, ..., d,)) specifies that master task
m is to wait for the terminations of task d,, d,, ..., d_before its termination.

TSG emphatically describes synchronization and concisely represents the execution for
single task. Task synchronization reachability graph gives the behavior of an entire
concurrent program and is constructed from the TSGs of the tasks that compose the
program. Suppose that a concurrent Ada program is composed of k tasks(the main
program is processed as the first task) and the TSG of the ith task is denoted by TSG,
=<N, E, nsi, F, L> (1<=1 <= k), then a TSRG-node m is a k-tuple of TSG-nodes (m[1],
m[2], ..., m[k]) where m[i]e N\U{L}, L indicates the corresponding task is inactive.

Definition 2.2. Task synchronization reachability graph(TSRG) is a labeled di-
rected graph G, = <M, E, L, m, F>, where M is the set of TSRG-nodes, one for indi-
cating an execution state of the program, E — MxM, is the set of edges, each corre-
sponding to one possible inter task synchronization activity, L is the mapping func-
tion, myis the initial node, mg= (ns', 1, ..., 1), Fis the final nodes representing final
state. There is an edge from m to m” iff any of the following conditions holds(i, j, [=
1,2, ..., k) where k is the number of tasks:

(1) 3i((m[i], m[i)e E, A L(m[i], m"[i]) = i>(s,, S,, ..., S,) A

(Vi(j=$,58, ... s) m[j] =L Am’ [j]:nsj)) (I#, j, m[{] = m’[1])
(2) Fi (m[i], m’[i})e E, A L(m[i], m"[i]) = m<(d,, d,, ..., d) A
(Vi(j=d,d, ...,d) m[jleF, A m’[j= 1)) (I, j, m[I] = m’[1])

(3) 3i3j (mlil, m[iDeE, A (m[j], m'[jeE A
((L(mli], m’[i]) = E.cs A L(m[j], m’[j]) = E.as) v
(L(m[i], m’[i]) = E.ce A L(m[j], m’[j]) = E.ae) v
(L(m[i], m[i)) = E.c A L(m[jl, m[j) =E.a)) (&, j, m{l] = m’[1]).

In definition 2.2, labels are similar to those in definition2.1 except that the start-
ing(ending) of rendezvous are labeled with E.s(E.e) or reduced as E. Three conditions
correspond to task activation, waiting for termination and rendezvous respectively. By
TSRG, we can precisely determine synchronization activities and get more accurate
MHP statement pairs.

Dependence Analysis of Concurrent Programs Based on Reachability Graph 407
3 TSRG-Based Program Dependence Graph and Its Applications

Considering that TSRG provides all global reachable states and one statement may
appears simultaneously in more than one TSRG-nodes which may reside in different
control flow branches of TSRG, then we propose a new paradigm of dependency between
one statement binding with its TSRG-node and another.

Definition 3.1. TSRG-based program dependence graph (RPDG) of a concurrent
Ada program is a directed graph G, = <M, S, MS, E>, where M is the set of TSRG-
nodes, S is the set of statements, MS = MXxS, is the set of RPDG-nodes, E ¢ MSxXMS,
is the set of edges, E = {(<m,, s>, <m,, s,>) | Dep(<m,, s>, <m,, s,>), Depe {DepDc,
DepAc, DepRc, DepCc, DepVc, DepSd, DepCd}}.

In definition 3.1, various dependencies can be primarily classified into control and
data dependencies. DepDc, DepAc, DepRc, DepCc, DepVc represent direct, activation,
rendezvous, competence, virtual control flow dependencies respectively. Direct control
flow dependency exists in task regions, similar to control dependency appearing in se-
quential programs. Activation, rendezvous, competence control dependency exist between
task regions and are induced respectively by task activation, rendezvous, competence for a
same entry. Virtual control dependency contributes to keep the connectivity of intra task
control dependency on the border between task regions. Since statements of definition
and reference on variables may execute concurrently or sequentially in some execution,
we classify data dependencies into concurrent and sequential data dependency, denoted by
DepSd, DepCd.

Dependencies in RPDG possess special property in transitivity, which do not ap-
pear in traditional program dependence graphs(PDG) where dependencies are defined
between statements. Below, we analyze two main cases in concurrent programs where
intransitive dependency happens in PDG:

(1) When multiple tasks compete for one resource (e.g. accept statement), only one of
them can occupy and consume it. This will lead to several exclusive program seg-
ments from those tasks taking part in the competence, i.e., only one of the
segments can be executed in one execution of the program. Obviously, it’s im-
possible that there exists dependency among these exclusive segments.

(2) From one statement s, in task, the dependency propagates back into another
statement s, in task, by inter task dependency sequence. When s, and s, appear
in different branches of control flow or s, always executes before s, in any
execution of task,, s, is impossible to indirectly depend on s,.

However, for such two cases imprecise transitivity of dependency sequence may
be hindered in RPDG in some extent. In (1), there must exist multiple TSRG-nodes
representing each competence and those exclusive segments will reside in different
branches in TSRG. If s,, s, are such exclusive statements and Dep(<m,, s,>, <m,, $>),
Dep(<m,, s>, <m,, s>) holds, then there’s no transitive dependency between s, and s,
because s appears respectively in two different TSRG-nodes m, and m, residing in
different branches. Similar situation may happen in the former case of (2). Although the
dependency is intransitive in the latter case of (2), we can say dependencies in RPDG is
transitive in most of cases.

408 X. Qi and B. Xu

In addition to having better transitivity than traditional PDG, dependence analysis in
RPDG are more accurate because of precisely detecting synchronization activities and
MHP pairs by TSRG. Thus, RPDG may be used in various software engineering ac-
tivities including program understanding, slicing, debugging, optimization, complexity
measurement, maintenance and etc. Given a concurrent Ada program consisting of k
tasks, n statements including ¢ entry call and accept statements, the cost of RPDG is
O(n(2¢/k+3)") in worst case.

4 Conclusions

Based on task synchronization reachability graph, we have constructed a new type of
program dependence graph — TSRG-based Program Dependence Graph(RPDG) for
concurrent Ada programs. RPDG is more precise than previous program dependence
graphs and solves the intransitivity problem of dependence relation in concurrent
programs in some extent. Nevertheless, we have mainly consider several primary aspects of
task mechanism. Some constructs, such as communications by shared variables, protected
object, arrays of tasks and etc, have not been discussed in detail. In the future work, we
will promote our research more systematically and extend to other concurrent lan-
guages to facilitate analysis for more concurrent programs.

References

1. Cheng, J.: Task dependence nets for concurrent systems with Ada 95 and its applications.
In: ACM TRI-Ada International Conference, St. Louis, Missouri, USA: ACM Press (1997)
67-78

2. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Languages,
Vol. 3 (1995) 121-189

3. Kirinke, J.: Static slicing of threaded program. ACM SIGPLAN Notices, Vol. 7 (1998) 35—
42

4. Nanda, M.G., Ramesh, S.: Slicing concurrent programs. ACM SIGSOFT Software Engi-
neering Notes, Vol. 25 (2000) 180-190

5. Zhao, J.: Multithreaded dependence graphs for concurrent Java programs. In: International
Symposium on Software Engineering for Parallel and Distributed Systems, Los Angeles,
California, USA: IEEE CS press (1999)13-23

6. Chen, Z.Q., Xu, B.W.: An Approach to Analyzing Dependence of Concurrent Programs.
Journal of Computer Research and Development, Vol. 39 (2002) 159-164

7. Qi, X.F, Chen, Z.Q., Xu, B.W.: A Petri Net Representation of Concurrent Ada Program
and Its Application for Communication Slice. Journal of Nanjing University, Vol. 38 (2002)
37-42

8. Dwyer, M. B, Clarke, L. A.: A Compact Petri Net Representation and Its Implication for
Analysis. IEEE Transaction on Software Engineering, Vol. 22 (1996) 794-811

	Introduction
	Task Synchronization Reachability Graph
	TSRG-Based Program Dependence Graph and Its Applications
	Conclusions
	References

