
Applying Loop Tiling and Unrolling to a Sparse
Kernel Code

E. Herruzo1, G. Bandera2, and O. Plata2

1 Dept. Electronics, University of Córdoba, Spain
2 Dept. of Computer Architecture, University of Málaga, Spain

Abstract. Code transformations to optimize the performance work well
where a very precise data dependence analysis can be done at compile
time. However, current compilers usually do not optimize irregular codes,
because they contain input dependent and/or dynamic memory access
patterns. This paper presents how we can adapt two representative loop
transformations, tiling and unrolling, to codes with irregular computa-
tions, obtaining a significant performance improvement over the original
non-transformed code. Experiments of our proposals are conducted on
three different hardware platforms. A very known sparse kernel code is
used as an example code to show performance improvements.

1 Introduction

Over the years, the ratio between the main memory latency and processor cycle
time has been increasing. Computer architects have proposed several hardware
mechanisms that reduce the impact of the memory latency problem: lockup-free
caches, prefetching, out-of-order execution, etc... The efficiency of architectural
improvements depends on the compiler ability to change the structure of pro-
grams for taking full advantage of them.

When optimizing a program an important performance improvement will
come from optimizing the most time-consuming code regions, that is, repetitive
sentence blocks. In this way, a number of compiler strategies have been developed
to enhance the performance: (1) strategies that change the original data layout
of the array variables [4,3]; (2) strategies based on loop restructuring transforma-
tions that reduce the number of executed instructions and/or change the order
in which statements are executed [1]. Some works also attempt to integrate both
strategies as a single algorithm [2].

Most of the compiler optimizations were designed for regular computa-
tions [5]. If access patterns are input or code conditional dependent, compiler op-
timizations are much more difficult to decide and apply. There are many special
memory access patterns, that appear frequently in irregular applications, where
no data dependence analysis is needed in order to apply some optimization trans-
formations. The majority of compilers, however, do not take into account these
special situations, loosing the opportunity of obtaining a better object code.

This paper analyzes one of the most important special irregular access pat-
terns, resulting from the multiplication of a sparse matrix by a dense array

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 409–412, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



410 E. Herruzo, G. Bandera, and O. Plata

(spMxV). We will show that various commercial compilers, from Compaq, Sili-
con Graphics and Cray, do not optimize codes with this kind of computational
structure. However, manually applying powerful optimization techniques, a sig-
nificant performance improvement is obtained.

2 Optimizing Sparse Codes

Conventional data dependence techniques are not usually applicable to irregular
codes, due to the variant nature of the reference patterns. This is one of the
main reasons why compilers usually cannot decide to apply loop optimizations
and then the obtained object code is frequently sub-optimal. In this section we
will analyze two widely used loop transformation techniques, loop tiling and loop
unrolling, in an irregular kernel code example (spMxV). We have selected these
techniques because we have found that the powerful loop tiling method slightly
improve the performance of the object code, while, a much simpler technique,
loop unrolling, is able to significantly reduce the execution time of the code.

To simplify our analysis, from now on we will focus our attention on the
sparse computation spMxV and compressed data storages. In this paper, we
have considered the CRS (Compressed Row Storage) and CCS (Compressed
Column Storage) formats, which do not restrict our range of application nor
store any unnecessary element. Basically, CRS (CCS) permits to represent the
sparse matrix using three arrays (DA, CO and RO). For CRS, the first array
stores the non-zero values of the matrix as they are traversed in a row-wise
fashion, the second array retains the column index of each non-zero element in
A, and the latter array marks the beginning of the data for each matrix row.
For CCS the elements are stored as traversed by columns.

2.1 Sparse Tiling

Loop tiling is a well known loop transformation that can be used automatically
by the compiler to create block algorithms and to exploit locality. It alters the
way in which individual iterations are executed so that iterations from outer
loops are carried out before completing all the inner loop iterations. The use
of tiling with sparse matrices is not as easy. Compressed representations make
difficult both the selection of the tile size and the code transformation to divide
the iteration space.

When using the CRS format, the problem is that while the column coordinate
of a non-null DA(j) is stored in the array entry CO(j), the row number is
not stored in RO(j). As the RO array stores a list of indices pointing to some
compressed array cells, the block tiling will require the modification of this array
to visit the entries by blocks. This transformation can be done during the matrix
reading. Fig. 1.a sketches the tiled code for the spMxV kernel. The benefit in
performance on the spMxV kernel is expected to be not very high. While arrays
Y , DA, RO and CO are traversed linearly, array X is accessed more randomly.
Thus, tiling can only improve locality in that array X, but with the side effect
of reducing locality access to array Y .



Applying Loop Tiling and Unrolling to a Sparse Kernel Code 411

rr1 = 1
DO j = 1, n/B

DO i = 1, n
rr2 = NRO(i+1+n*(j-1))
rr3 = rr2-rr1
DO rr4 = 0,rr3-1

Y(i)+= NDA(rr1+rr4)*X(NCO(rr1+rr4))
ENDDO

rr1 = rr2
ENDDO

ENDDO

rr1 = 1
DO i = 1, n

rr2 = RO(i+1)
rr3 = rr2-rr1
rr4 = 0
DO WHILE (rr4 .LT. rr3)

Y(i) = Y(i)+DA(rr1+rr4)*X(CO(rr1+rr4))
rr4 = rr4+1
DO WHILE (rr4 .LT. rr3-5)

Y(i) += DA(rr1+rr4)*X(CO(rr1+rr4))
Y(i) += DA(rr1+rr4+1)*X(CO(rr1+rr4+1))
Y(i) += DA(rr1+rr4+2)*X(CO(rr1+rr4+2))
Y(i) += DA(rr1+rr4+3)*X(CO(rr1+rr4+3))
Y(i) += DA(rr1+rr4+4)*X(CO(rr1+rr4+4))
rr4 = rr4+5

ENDDO
ENDDO

rr1 = rr2
ENDDO

(a) (b)

Fig. 1. (a) SpMxV after the sparse tiling using the modified CRS representation; (b)
SpMxV after the sparse loop unrolling of size 5 (δ = 5)

2.2 Sparse Unrolling

This technique cannot be directly applied in sparse compressed representations,
because the number of non-null entries per dimension is not known at compile-
time. In the spMxV code the inner loop uses the index array RO to traverse the
non-nulls of a matrix row. As the content of this array is unknown during the
compilation, the optimal unrolling step should be selected depending on matrix
features, as matrix homogeneity. As this kind of information is not known by
the compiler, we can do it manually, as no data dependence relation is violated
by the transformation in any case.

Fig. 1.b shows the spMxV kernel code with the inner loop unrolled by an
example factor of δ = 5. Two DO WHILE appear instead of the inner loop j.
The inner while loop iterates a block of 5 consecutive sentences of the original
j loop, while the outer while loop is used to execute the residual number of
sentences. An important parameter of this transformation is the selection of the
unrolling factor δ. Its value depends on sparse matrix properties, as its size,
the sparsity pattern and the amount of non-null entries by row. Other facts are
related to properties of the machine processor, as the amount of internal CPU
registers or its ILP (Instruction Level Parallelism) capacity.

3 Experimental Results and Conclusions

In this section we present some experimental results for the codes presented
before, conducted on different hardware platforms and using different compilers.
We only discuss here results for the unrolling transformation, because sparse loop
tiling for the spMxV kernel is predicted to have a small effect on its performance.

We have evaluated the unrolled spMxV code on three platforms: a Digital
AlphaServer 4100 with a 400 MHz Alpha 21164 processor; a SGI Origin2000
with a 195 MHz MIPS R10000 processor; and a Cray T3E with a 450 MHz
Alpha 21164 processor. For the purposes of an experimental validation, we run



412 E. Herruzo, G. Bandera, and O. Plata

Matrix Alpha 21164 R10000 Cray T3E
Name Size Density δ spMxV Improv. δ spMxV Improv. δ spMxV Improv.

Psmigr3.rua 3140x3140 5.51% 14 22.80 35% 15 91.64 22% 6 18.82 62.7%
Fidapm37.rua 9152x9152 0.91% 14 32.51 32% 14 116.01 45% 6 19.70 73.7%

Beaflw.rra 497x507 21.2% 11 1.66 99% 12 13.48 34% 6 1.27 79.4%
Af23560.rua 17281x17281 0.18% 9 20.52 23% 3 363.1 11% 6 13.03 34.7%

S3dkq4m2.dat 90449x90449 0.03% 12 114.9 30% 3 1371.2 8% 4 54.61 29.7%

Fig. 2. Improvement of the spMxV kernel on the 3 platforms with different sparse
matrices and different δ values (time in milliseconds)

the sparse Conjugate Gradient (CG) algorithm, the oldest, best known, and
most effective of the non-stationary iterative methods for the solution of sym-
metric positive definite systems. Since the features of the input matrix become
paramount in the algorithm behavior, we have selected a set of very different
matrices from the Harwell-Boeing Collection (HB).

Fig. 2 shows the execution times for the spMxV kernel code and the improve-
ment of the sparse unrolling, for different HB sparse matrices and using different
compilers. The unrolling factor δ in table corresponds to the value with the
best performance improvement. This value has a large variation range because
it depends strongly on input sparse data (sparsity pattern).

Our main conclusions from this work are that tiling requires a high cost pre-
processing stage to modify the storage format, an extra memory cost (NRO
vector is bigger than RO), and the locality exploited in the source vector X is
missed in destination (vector Y ). We can not exploit temporal locality because
the sparse matrix and the dense vector are linearly stored, and then does not
exist any data reusage in cache line. Another conclusion is that unrolling reduces
the loop overhead and obtain in most real situations a significant improvement
in performance. The selection of the unrolling factor (δ) depends on the matrix
sparsity pattern and size and the processor internal characteristics.

References

1. S. Carr, K.S. Mckinley and C. Tseng, Compiler Optimizations for Improving Data
Locality, 6th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, October 1994.

2. M. Kandemir and J. Ramanujam, Data Relaton Vectors: A New Abstraction for
Data Optimizations, IEEE Transactions on Computers, Vol. 50, No. 8, August 2001.

3. M. O’Boyle and P. Knijnenburg, Integrating Loop and Data Transformations for
Global Optimizations, IEEE International Conference on Parallel Architectures and
Compilation Techniques, Paris, France, October 1998.

4. G. Rivera and C-W. Tseng, Data Transformations for Eliminating Conflict Misses,
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Montreal, Canada, June 1998.

5. M. Wolfe, High Performance Compilers for Parallel Computing, Addison–Wesley
Pub., Redwood City, CA, 1996.


	Introduction
	Optimizing Sparse Codes
	Sparse Tiling
	Sparse Unrolling

	Experimental Results and Conclusions



