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Abstract. Parallelizing large sequential programs is known as a challenging
problem. This paper focuses on problems encountered during parallelization
process of different flood models and on the approaches used for solving them.
The approaches are focused on reducing development time, which can help
programmers make a parallel version of existing sequential programs within a
short time.

1 Introduction

Over the past few years, floods have caused widespread damages throughout the
world. Most of the continents were heavily threatened. Therefore, modeling and
simulation of floods in order to forecast and to make necessary prevention is very
important. As Linux clusters are widely used as low-cost high performance platforms,
it is important to make the parallel versions of the flood models running on Linux
clusters. That limits the possibility of using OpenMP or parallel compilers for
parallelization. Therefore, programmers have to rely on MPI or other message-
passing libraries for developing the parallel version of the flood models.

This paper focuses on the problems encountered during parallelizing flood models
using MPI and solutions for them. In Section 2, the flood models are introduced. The
problems encountered during parallelization and their solutions are discussed in
Section 3. Section 4 gives the results of the parallelization and Section 5 concludes
the paper.

2 Numerical Flood Models

At the beginning of ANFAS project [4], many surface-water flow models were
studied in order to find a suitable high-performance model for pilot sites at Vah river
in Slovakia and Loire river in France. The result of the study showed that many
models exist only in sequential forms. Two models were chosen for the pilot site; one
is FESWMS [3] which is based on finite element approach and is distributed with
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commercial package SMS [9] by EMS-I. The second model is DaveF, a new model
based on time-explicit, cell-centered, Godunov-type, finite volume scheme.

Although both models are used for modeling water flow, they are based on
completely different numerical approaches. Detailed descriptions of the numerical
approaches of the models can be found in [5]. This paper focuses on problem
encountered during its parallelization and solutions for the problems. Therefore, the
following descriptions of computational approaches are purely from the view of
parallel programming.

3 Problems Encountered during Parallelization with MPI

Understanding Algorithms
Although the mathematical approaches (finite elements, finite volumes) of the models
may be well-known, there are many hydraulic details in the algorithms such as
different boundary conditions, wetting/drying, raining/infiltration and different tricks
to stabilize the solutions. Such details complicate the programs considerably and are
not easy to understand for the programming experts who parallelize the source.

However, in our parallelization approaches (see later in data and code
duplications), the programmers do not have to understand all the details in the
algorithms. From the view of parallelization, every finite-element model consists of
three steps: generating the matrix, solving the matrix and updating solutions. The
programmers do not have to learn what governing differential equations are used in
the models or Galerkin method works, as the implementation already exists in the
source code and they are not going to change them. Similarly, the finite-volume
algorithm can be simplified as follows: in every time step, each cell updates its values
from its current values and the values of its neighbors. That frees the programmers
from learning all details in hydraulics and allows them to parallelize applications they
are not familiar with.

Understanding the Source Codes
The source code of FESWMS has about 65 thousand lines, i.e. about one thousand
pages; DaveF is nearly the same. Reading and understanding the source codes
(especially when programmers do not understand all details in algorithms) for
identifying the critical part may take a long time. Therefore, profiling tools (e.g. gprof
in Linux) are extremely useful for parallelizing sequential programs. By using
profiling tools, programmers can easily identify the computation-intensive parts in the
source code (computation kernel), see the call graphs and analyze the performance of
the program. Programmers then can concentrate on studying the computation kernel
needed to parallelize/optimize, and consider the rests of the source code as “black
boxes”. Discussion with the original authors of the models is also useful for
understanding the most important data structures (e.g. global arrays of
nodes/cells/elements).

Writing the Parallel Code
After analyzing the algorithm and the source code, the programmers can start to write
parallel versions of the models. Paralleling with MPI for Linux clusters adds some
more problems. It may be argued whether writing a parallel program from scratch
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with MPI on distributed-memory architectures such as Linux clusters is easier or
more difficult than with OpenMP on share-memory systems such as supercomputers
[6]. However, to parallelize existing sequential programs it is much easier to use
OpenMP, because OpenMP does not change program and data structure.

In our approach, data and codes, which are not interesting in parallelization, are
duplicated to reduce the development time. The data and code duplication greatly
reduce the amount of codes that need to be modified during parallelization. That also
allows programmers to ignore the implementation details in the parts of the codes that
are duplicated. The programmers have to understand only the very basic computation
scheme of the algorithms used in the models, and study/modify only few routines in
the computation kernel of the models during parallelization.

4 Experimental Results

Experiments have been carried out on Linux cluster at the Institute of Informatics (II-
SAS) in Slovakia. The Linux cluster at II-SAS consists of 16 computational nodes,
each with a Pentium IV 1800 MHz processor and 256 MB RAM. All of the nodes are
connected by an Ethernet 100Mb/s switch. Input data for the experiments are taken
from Vah river in Slovakia and Loire river in France.

Fig. 1. Speedup of DaveF on II SAS cluster

In parallel version of FESWMS, only about 50 lines of code are modified from the
65000 lines in original sequential version, and 150 new lines of code are created for
the new parallel iterative matrix solver from PETSC library, which replaces the
frontal solver from the original sequential version. The speedup of FESWMS is
difficult to describe in a table or graph. There are several iterative solvers and
preconditioners, each of them has also several additional parameters. According to
our experiments, the combination of BiCGStab method and ILU preconditioner is the
quickest one (about 10x faster than the original frontal method), but GMRES/ILU is
the most stable combination in the sequential version. Generally the speedup of
FESWMS is about 5-7 on 16 nodes.
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The parallel version of DaveF has less than modified 100 lines from its 45000 lines
of code in the original sequential version and it is developed in 3 days. That clearly
proves the advantages of our approach: to develop a parallel version in a very short
time. Fig.1 shows the speedup of DaveF on II-SAS with two different input data from
Loire river, the one being four times larger than the other one. It is easy to see that the
speedup is increased with the size of input data, especially for larger number of
processors. The reason is the fine granularity of DaveF; the more processors are used
the larger is the granularity performance effect.

5 Conclusion and Future Work

This paper has presented an approach to parallelizing sequential flood models. The
approach allows programmers to produce parallel versions within very short time.
The approach is proved with two different flood models that are used in the ANFAS
project.

At the moment, both models have been ported to Grid environment in CrossGrid
project [7] and are running in CrossGrid testbed [8]. The details of Grid-aware Flood
Virtual Orgranization, where DaveF is used, are described in a separate paper [2].
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