
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 553–556, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Fast and Efficient Method for Processing Web
Documents

Dániel Szegő

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1521, pf. 91, Budapest, Hungary
szegod@mit.bme.hu

Abstract. This paper investigates the possibility of realizing some Web docu-
ment processing tasks in the context of modal, especially description logics,
providing a precise theoretical framework with well-analyzable computational
properties. A fragment of SHIQ description logic which can primarily be used
in document processing is introduced. The paper also presents a linear time al-
gorithm for model checking Web documents proving that the logical approach
can compete even in efficiency with other industrial solutions.

1 Introduction

During the last ten years, the success of World Wide Web was increasing and it has
become part of our daily life. Due to this enormous success, several techniques for
processing, transforming or searching Web documents, like XML or HTML, have
been developed. Unfortunately, these techniques are usually based on different theo-
retical approaches, no uniform representation is known. Primary consequence of
different theoretical frameworks is that several parts of them are reinvented and re-
implemented at each of the techniques. Hence, some of these frameworks are lack of
simple formal semantics or efficient algorithms.

Description logics are simple logical formalisms which primarily focus on de-
scribing terminologies and graph style knowledge [1,2]. Therefore, they seem to be
an adequate basis for developing a common computational environment for several
Web document processing tasks [3].

The origin of this work was motivated by a Web filter project. Several elements of
the project and logic presented in this paper were previously published in [4,5]. How-
ever, non of the algorithmic aspects were considered yet.

The reminder of this paper is organized as follows. The fragment of SHIQ, and
some of its application areas are introduced in section 2. Section 3 presents the basic
idea behind the model checking algorithm. Last but not least section 4 draws some
conclusions.

554 D. Szegő

2 A Logical Approach for Processing Web Documents

This section briefly introduces a fragment of SHIQ description logic, which fragment
has primary importance in Web document processing. First of all, the model of the
logic has to be specified exactly, which is practically a formalized view of a web
document. The model of a document is basically an ordered tree which nodes are
associated with atomic predicates.
The document model is a six tuple <V, AP, top, c, ap, n>.
1. V is a set of nodes of the graph, AP is a set of atomic predicate, top∈V is the top

node.
2. c, ap and n binary relations describe the structure of an ordered tree which nodes

are labeled by atomic predicates.
This definition seems natural for an XML document. For example, tags can be

translated to nodes and embedding of tags represents the children relation. The defi-
nition is less trivial for an HTML document, consequently pre-transformations and
pre-filters need to be applied.

Syntax and semantics of the logic are based on roles and concepts (Table 1.). In
order to define a formal semantics of the syntax, an I interpretation function is con-
sidered, which assigns to every concept a set of nodes of a given ‘d’ document model
and to every role a binary relation over V×V.

Table 1. Syntax and semantics of the logical framework.

Constructor Syntax Semantics
Concept Constructors

atomic
concept

a aI = { v∈V | a∈ap(v)}

disjunction or (C1 or C2)
I = C1

I ∪C2

I

conjunction and (C1 and C2)
I = C1

I ∩C2

I

complement not (not C)I = V \ CI

universal
quant.

all (all R.C)I = {v∈V | ∀w. <v,w>∈RI implies w∈CI}

existential
quant.

some (some R.C)I = {v∈V | ∃w. <v,w>∈RI and w∈CI}

top concept every everyI = V
bottom
concept

none noneI = ∅

Role Constructors
next role next nextI = n
children role child childI = c
inverse role inverse (inverse R)I={<w,v>∈V×V| <v,w>∈ RI}
transitive
closure

infinite (infinite R)I = ∪j>=1(R
I)j

A Fast and Efficient Method for Processing Web Documents 555

Using a logic in real life applications requires the existence of several basic rea-
soning services and efficient algorithms for computing these services. One of the
most important and most efficient basic reasoning service is model checking but oth-
ers like equivalence, querying or subsumption could also be used widely.

Basic reasoning services can be used in a wide variation of document processing
tasks. Simple model checking is the basic reasoning mechanism of a searching proc-
ess (e.g. searching in an XML database or searching the WWW). A logical expression
could be the searching statement and documents, for which the evaluation of the
statement is not an empty set, form the result of the search. Beside search, model
checking can be used in several other areas, e.g. document categorization. In docu-
ment transformation (e.g. XSLT, XQuery) or information extraction, the principal
problem is to select some tags of the document which match with a predefined tem-
plate. It is the most natural application area of querying because logical expressions
can easily be regarded as templates. Last but not least, document checking (e.g. DTD)
can be efficiently supported by subsumption or equivalence of model checking. For
example, the following statement would be true for only those XML documents in
which every slideshow tag contains only slide or title tags: ‘slide ⇒ all child.(title or
slide)’.

3 Model Checking Algorithm

The model checking algorithm is based on the algebraic approach of the semantics.
Expressions are interpreted as sets so concept constructors can be interpreted as op-
erations between sets. For example, a conjunction can be regarded as a binary opera-
tion which transforms two input sets to an output one (‘and’: 2V×2V→2V). Similarly,
universal or existential quantifications can be interpreted as unary operations associ-
ating input sets with output ones (‘all child’: 2V→2V). Role constructors are mani-
fested as variations in the unary operations. For instance, ‘all child’ represents a dif-
ferent unary operation as ‘all infinite child’ does.

The only question which highly effects efficiency is how to represent sets and re-
lations of the document model. In our approach, nodes of the document model are
labeled by integers in the [0….|V|-1] domain, where |V| denotes the cardinality of the
node set. Each node has exactly one integer label. Primary consequence of this label-
ing is that most part of the algorithm can be built on hash tables and simplified hash
joins.

The structure of the document is stored in five tables. For example, ‘parenttable’ is
an array of integers associating each integer label of a node with the integer label of
its parent node (according to the inverse of ‘c’ binary relation of the document
model). The algorithm implements a realization for each operation. As an example,
we can consider ‘some infinite child’ operator which requires the identification of
nodes that can be reached from a given set of nodes. It can be implemented by a
depth-first search of the graph described by ‘parenttable’. Since the number edges of
the graph are linear in the size of nodes, depth first search runs linear time in the size
of nodes of the document model.

556 D. Szegő

This approach has the following important property:

Proposition.
If the number of possible atomic predicates of each node is bound, the model check-
ing algorithm has O(l*|V|) time and space complexity (where l is the length of the
logical expression, and |V| is the number of nodes of the document model).

Beside theoretical investigation, an experimental architecture has also been imple-
mented in C# to test the concepts and algorithms between real circumstances. The
architecture realizes XML and HTML parsers which load the administration tables
directly and an algorithm for evaluating logical expressions over document models.

4 Conclusion

This paper analyzed the possibilities of using description logics in web document
processing. It has identified a fragment of SHIQ which has primary importance in
document processing and briefly introduced how specific document processing prob-
lems can be solved by this fragment. It has several benefits comparing to other indus-
trial solutions of document processing. It provides a uniform knowledge representa-
tion with well defined syntax, semantics and algorithms, which representation is
sometimes more expressive than industrial ones. Hence, description logic integrates
several previously unrelated document processing problems like categorization or
document checking into one common framework. Besides, the article introduced an
efficient algorithm for evaluating logical expressions over Web documents. Since the
algorithm is linear, it can compete even in efficiency with other industrial solutions.

References

1. Baader, F., Nutt, W.: Basic Description Logics, In the Description Logic Handbook, edited
by F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge
University Press (2002) 47-100

2. Borgida, A., Brachman, R. J.: Conceptual Modeling with Description Logics In the De-
scription Logic Handbook, edited by F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
P.F. Patel-Schneider, Cambridge University Press (2002) 359-381

3. Calvanese, D., Giacomo, G., Lenzerini, M.: Representing and reasoning on XML docu-
ments: A description logic approach Journal of Logic and Computation, 9(3) (1999) 295-
318

4. Szegő, D.: Using Description Logics in Web Document Processing, SOFSEM vol. II.
(2004) 256-263

5. Szegő, D.: A Logical Framework for Analyzing Properties of Multimedia Web Documents,
Workshop on Multimedia Discovery and Mining, ECML/PKDD-2003, (2003) 19-30.

	1 Introduction
	2 A Logical Approach for Processing Web Documents
	3 Model Checking Algorithm
	4 Conclusion
	References

