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Abstract. In this paper we develop a family of A-stable one-step meth-
ods with high derivatives by means of a collocation technique. We present
construction details and a theory to justify such sort of methods. We also
concentrate on an effective way of their practical implementation.

1 Introduction

In this paper we study one-step numerical methods for ordinary differential equa-
tions (ODEs) of the form

x′(t) = g
(
t, x(t)

)
, t ∈ [t0, t0 + T ], x(t0) = x0 (1)

where x(t) ∈ Rn and g : D ⊂ Rn+1 → Rn is a sufficiently smooth function.
Problem (1) is quite usual in theoretical research and in practical engineering
(see, for example, [2], [4], [6], [7], [12]). Therefore efficient methods for finding
its solution with any set accuracy (up to round-off errors) are important as in
theory as in practice.

Here, we present a family of one-step collocation methods with high deriva-
tives. Note that such topic of research proved its efficiency. So, there are many
papers in this field (see [5], [7], [8], [11] and so on). Especially, we pay attention
to the general linear methods developed by Butcher [4] which also include high
derivatives. In general, all that methods are implicit. Therefore the most difficult
task is their correct and effective implementation because we have to involve an
additional iterative scheme.

The outline of this paper is organized as follows: We present the family
of one-step collocation methods with high derivatives in Sect. 2. There, we also
study convergence and A-stability of these methods. An effective implementation
based on Newton-like iterations is given in Sect. 3. The last section of the paper
is devoted to the problem of step size selection. Theoretical results are clearly
confirmed by numerical experiments.

2 Collocation Methods with High Derivatives

As in [1], we use the collocation technique to construct numerical methods with
high derivatives. First, we fix the points tk, tk+1/2 and tk+1 on an arbitrary
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interval [tk, tk+1] as collocation ones. Second, we assume that we know derivatives
of the right-hand part of problem (1) at the nodes tk and tk+1 up to order p.
Now we can construct the Hermit interpolation formula (see, for example, [3])
and substitute it into the right-hand part of system (1) instead of g

(
t, x(t)

)
.

Integrating the newly obtained system on the interval [tk, tk+1] we come to the
numerical method

xk+1/2 = xk + τk

p∑

r=0

τ r
k

(
a
(r)
1 g

(r)
k + a

(r)
3 g

(r)
k+1

)
+ τka2g

(0)
k+1/2, (2a)

xk+1 = xk + τk

p∑

r=0

τ r
k

(
b
(r)
1 g

(r)
k + b

(r)
3 g

(r)
k+1

)
+ τkb2g

(0)
k+1/2, (2b)

k = 0, 1, . . . ,K − 1, where

a
(r)
j =

p−r∑

i=0

1
i!r!

[
(θ − (j − 1)/2)p+1

Ψ(θ)

](i)

θ=(j−1)/2

1/2∫

0

Ψ(θ)
(θ − (j − 1)/2)p−i−r+1 dθ,

b
(r)
j =

p−r∑

i=0

1
i!r!

[
(θ − (j − 1)/2)p+1

Ψ(θ)

](i)

θ=(j−1)/2

1∫

0

Ψ(θ)
(θ − (j − 1)/2)p−i−r+1 dθ

when j = 1, 3 and r = 0, 1, . . . , p,

a2 =
(−1)p+1

4p+1

1/2∫

0

θp+1(θ − 1)p+1dθ, b2 =
(−1)p+1

4p+1

1∫

0

θp+1(θ − 1)p+1dθ,

x0 = x0, θ = (t− tk)/τk, Ψ(θ) = θp+1(θ − 1/2)(θ − 1)p+1, g(r)
k denotes the r-th

derivative1 of the right-hand part of problem (1) with respect to t evaluated at
the point tk, and τk is a step size which may be fixed or variable.

The results presented above give a way to derive

Theorem 1 Let the right-hand part of ODE (1) possess continuous derivatives
up to order 2p+5 in a neighborhood of the solution x(t) on the interval [t0, t0+T ],
where p is a nonnegative integer number. Then method (2) is convergent, it has
stage order 2p+ 3 and classical order 2p+ 4, and its coefficients satisfy

a
(r)
1 =

p+ 1
r!2p+r+2

p−r∑

i=0

i+r∑

l=0

p+1∑

j=0

i∑

q=0

(−1)l(i+ r)!(p+ q)!
l!(i+ r − l)!j!(p+ 1 − j)!(l + j + 2)q!2q

, (3a)

a2 =
(p+ 1)!

2

p+1∑

l=0

(−1)l

l!(p+ 1 − l)!(2l + 1)
, (3b)

1 Here and further the zero-derivative implies the original function.
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a
(r)
3 =

(−1)r+1(p+ 1)
r!2p+r+2

p−r∑

i=0

i+r∑

l=0

p+1∑

j=0

(−1)j(i+ r)!
l!(i+ r − l)!j!(p+ 1 − j)!(l + j + 2)

×
i∑

q=0

(p+ q)!
q!2q

, r = 0, 1, . . . , p,

(3c)

b
(r)
1 = a

(r)
1 + (−1)ra

(r)
3 , b2 = 2a2, b

(r)
3 = (−1)ra

(r)
1 + a

(r)
3 . (3d)

Theorem 2 One-step method (2) is A-stable for any integer p ≥ 0.

Further we call methods of the form (2) as E-methods with high deriva-
tives, for short. As an example of E-methods, we present the following numerical
method of order 8 obtained by Theorem 1 when p = 2:

xk+1/2 = xk +
689
2240

τkg
(0)
k +

169
4480

τ2
kg

(1)
k +

17
8960

τ3
kg

(2)
k − 81

2240
τkg

(0)
k+1

+
41

4480
τ2
kg

(1)
k+1 − 19

26880
τ3
kg

(2)
k+1 +

8
35
τkg

(0)
k+1/2,

(4a)

xk+1 = xk +
57
210

τk

(
g
(0)
k + g

(0)
k+1

)
+

1
35
τ2
k

(
g
(1)
k − g

(1)
k+1

)

+
1

840
τ3
k

(
g
(2)
k + g

(2)
k+1

)
+

16
35
τkg

(0)
k+1/2.

(4b)

3 Implementation of E-methods with High Derivatives

When implementing method (2) in practice, we have to involve some additional
iterative scheme to treat the corresponding nonlinear algebraic system. We ap-
plied the simple (fixed-point) iteration and the modified (or full) Newton one in
[10] to obtain the following combined algorithms:

E-method with the simple iteration (SI-method):

Xi
k+1 = Ḡτ

kX
i−1
k+1, i = 1, 2, . . . , N, (5a)

X0
k+1 =

(
Π(tk+1/2)T , Π(tk+1)T

)T

∈ R2n, k = 0, 1, . . . ,K − 1, (5b)

where Xk+1
def=
(
(xk+1/2)T , (xk+1)T

)T ∈ R2n, the mapping Ḡτ
k : R2n → R2n

presents the right-hand part of system (4), x̄k is an approximate solution of
problem (2) obtained after N iterations; i.e., x̄k

def= xN
k , ḡ(r)

k
def= g(r)(tk, x̄k), and

Π(t) implies a predictor which is an interpolation formula based on the values
of numerical solution x̄k (Π(t) ≡ x̄k in the trivial case).

E-method with the Newton iteration (N-method):

Xi
k+1 = Xi−1

k+1 − ∂F̄ τ
k (Xi−1

k+1)
−1F̄ τ

kX
i−1
k+1, i = 1, 2, . . . , N, (6a)

X0
k+1 =

(
Π(tk+1/2)T , Π(tk+1)T

)T

∈ R2n, k = 0, 1, . . . ,K − 1, (6b)
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where F̄ τ
k

def= E2n − Ḡτ
k (E2n is the identity operator in R2n) and ∂F̄ τ

k (Xi−1
k+1) is

the Jacobian of the mapping F̄ τ
k evaluated at the point Xi−1

k+1.
E-method with the modified Newton iteration (MN-method):

Xi
k+1 = Xi−1

k+1 − ∂F̄ τ
k (X0

k+1)
−1F̄ τ

kX
i−1
k+1, i = 1, 2, . . . , N, (7a)

X0
k+1 =

(
Π(tk+1/2)T , Π(tk+1)T

)T

∈ R2n, k = 0, 1, . . . ,K − 1. (7b)

Let us test our combined algorithms with the underlying method (4) on the
restricted three body problem

x′′
1(t) = x1(t) + 2x′

2(t) − µ1
x1(t) + µ2

y1(t)
− µ2

x1(t) − µ1

y2(t)
, (8a)

x′′
2(t) = x2(t) − 2x′

1(t) − µ1
x2(t)
y1(t)

− µ2
x2(t)
y2(t)

, (8b)

y1(t) =
(
(x1(t) +µ2)2 +x2(t)2

)3/2
, y2(t) =

(
(x1(t) −µ1)2 +x2(t)2

)3/2
, (8c)

where t ∈ [0, T ], T = 17.065216560157962558891, µ1 = 1 − µ2 and µ2 =
0.012277471. The initial values of problem (8) are: x1(0) = 0.994, x′

1(0) = 0,
x2(0) = 0, x′

2(0) = −2.00158510637908252240. The solution path of this prob-
lem is a periodic one with the period T (see, for example, [6]).

Table 1. Global errors of the EN-algorithm with trivial predictor for E-method (4)

N K
1.000 · 10+04 2.000 · 10+04 4.000 · 10+04 8.000 · 10+04 1.600 · 10+05

1 2.068 · 10+00 1.571 · 10+00 2.066 · 10+00 2.000 · 10+00 2.612 · 10+00

2 2.193 · 10−02 6.138 · 10−05 1.587 · 10−07 4.408 · 10−10 1.043 · 10−12

3 2.582 · 10−04 2.059 · 10−07 6.728 · 10−10 4.039 · 10−13 7.865 · 10−14

4 2.582 · 10−04 2.059 · 10−07 6.727 · 10−10 3.974 · 10−13 7.865 · 10−14

Table 2. Global errors of the EMN-algorithm with trivial predictor for E-method (4)

N K
1.000 · 10+04 2.000 · 10+04 4.000 · 10+04 8.000 · 10+04 1.600 · 10+05

1 2.068 · 10+00 1.571 · 10+00 2.066 · 10+00 2.000 · 10+00 2.612 · 10+00

2 1.841 · 10+00 2.938 · 10−01 8.422 · 10−03 2.615 · 10−04 8.146 · 10−06

3 3.716 · 10−03 2.582 · 10−05 1.192 · 10−07 4.959 · 10−10 2.401 · 10−12

4 4.660 · 10−04 3.322 · 10−07 1.264 · 10−10 3.025 · 10−13 5.085 · 10−14

5 2.589 · 10−04 2.060 · 10−07 6.726 · 10−11 4.651 · 10−13 4.150 · 10−14
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Table 3. Global errors of the ESI-algorithm with trivial predictor for E-method (4)

N K
1.000 · 10+04 2.000 · 10+04 4.000 · 10+04 8.000 · 10+04 1.600 · 10+05

3 5.689 · 10+00 1.254 · 10+00 2.098 · 10−01 2.661 · 10−02 3.416 · 10−03

4 9.384 · 10−01 1.360 · 10−01 8.004 · 10−03 4.604 · 10−04 2.738 · 10−05

5 1.971 · 10−01 6.712 · 10−03 2.045 · 10−04 6.314 · 10−06 1.964 · 10−07

6 8.074 · 10−03 1.655 · 10−04 2.605 · 10−06 3.924 · 10−08 5.952 · 10−10

7 1.900 · 10−03 1.944 · 10−05 1.742 · 10−07 1.427 · 10−09 1.155 · 10−11

8 1.225 · 10−03 4.420 · 10−06 1.622 · 10−08 6.113 · 10−11 5.988 · 10−13

9 3.920 · 10−04 5.595 · 10−07 8.233 · 10−10 1.136 · 10−12 1.060 · 10−13

10 2.817 · 10−04 2.309 · 10−07 8.464 · 10−11 3.899 · 10−13 1.206 · 10−13

Tables 1–3 exhibit that all the methods under testing are convergent for prob-
lem (8) and their orders depend on the number of iterations per grid point. We
also see that the full (or modified) Newton iteration demonstrates the maximum
order convergence with fewer iteration steps than the simple one. Unfortunately,
it may be too expensive to compute the exact Jacobian of method (2) because
of the high derivatives. Now we show how to simplify it.

First of all we replace the exact Jacobian ∂F̄ τ
k in method (6) with the fol-

lowing matrix:

Ak
def=

(
1 − τka

(0)
2 ∂gk+1/2 −τka(0)

3 ∂gk+1

−τkb(0)2 ∂gk+1/2 1 − τkb
(0)
3 ∂gk+1

)

,

and obtain the E-method with the simplified Newton iteration (ESN-method). If
we test the new method on our problem (8) we come to Table 4. It is obvious
that the ESN-method is cheaper than the previous Newton-type methods, but
we see that it acts like the EMN-method. The corresponding theoretical result
is given by

Table 4. Global errors of the ESN-algorithm with trivial predictor for E-method (4)

N K
1.000 · 10+04 2.000 · 10+04 4.000 · 10+04 8.000 · 10+04 1.600 · 10+05

1 2.102 · 10+00 1.862 · 10+00 2.056 · 10+00 1.989 · 10+00 1.839 · 10+00

2 2.976 · 10+00 2.467 · 10−01 1.024 · 10−02 3.774 · 10−04 1.304 · 10−05

3 2.347 · 10−02 3.725 · 10−04 5.377 · 10−06 8.578 · 10−08 1.393 · 10−09

4 2.066 · 10−04 1.274 · 10−07 9.618 · 10−11 1.803 · 10−12 1.140 · 10−13

5 2.571 · 10−04 2.059 · 10−07 6.739 · 10−11 4.583 · 10−13 4.428 · 10−14

Theorem 3 Let the right-hand part of ODE (1) possess continuous derivatives
up to order 2p+5 in a neighborhood of the solution x(t) on the interval [t0, t0+T ],
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where p is a nonnegative integer number. Then the ESN-algorithm based on
method (2) is convergent, and its error satisfies

‖x(tk) − x̄k(N)‖ ≤ Cµτ
µ, k = 1, 2, . . . ,K, (9)

where µ = min{(ξ + 1)(N + 1) − 2, 2p + 4}, ξ = min{ζ + 1, 2p + 3}, ζ is the
order of predictor Π(t) which is used to compute an initial approximation in the
simplified Newton iteration, τ def= max{τk} is a diameter of the grid, and Cµ is
a constant.

4 Step Size Control for E-methods with High Derivatives

Now we consider the problem of step size selection for E-methods with high
derivatives. Let us assume that the exact solution of problem (1) is known at
the point tk; i. e., xk = x(tk), and the local error tolerance εl is given. The
notation x̂k+1 denotes the numerical solution calculated by two steps of method
(2) with the size τk/2. Then the algorithm to control the local error of E-methods
is presented as follows:

Algorithm 1: Local step size control

Step 1. Compute x̃k+1, x̂k+1.
Step 2. Calculate ‖∆x̃k+1‖ = ‖x̂k+1 − x̃k+1‖/(1 − 1/22p+4).

Step 3. τ̃k := θ
(
εl/‖∆x̃k+1‖

)1/(2p+5)
τk.

Step 4. If ‖∆x̃k+1‖ > εl then τk := τ̃k and go to Step 1,
else x̃k+1 := x̃k+1 +∆x̃k+1 and τk+1 := τ̃k.

Step 5. tk := tk + τk, k := k + 1 and go to Step 1.

Here, θ ∈ (0, 1) is a safety factor.
If we want to apply the local error control mechanism to iterative methods

(5)–(7) we have to provide sufficient iterations at each grid point as the following
estimates indicate:

N ≥ log2

(
2p+ 7
ξ + 1

)
for the EN-method, (10)

N ≥ 2p+ 7
ξ + 1

− 1 for the EMN- and ESN-methods, (11)

N ≥ 2p+ 6 − ξ for the ESI-method. (12)

Let us test our methods with the local step size control on problem (8). If we
use the combined algorithms mentioned above to solve this problem we come to
the data presented in Table 5. The number of iterations per grid point for each
type of the iterative E-methods was calculated by formulas (10)–(12), respec-
tively. These numbers are given in parentheses at the first column of Table 5.
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Table 5. Global errors of variable step size iterative algorithms based on E-method
(4) with Algorithm 1 to control step size and with extrapolation

Type of required accuracy
iteration εl = 10−03 εl = 10−04 εl = 10−05 εl = 10−06 εl = 10−07

SI(9) 3.67 · 10−03 5.25 · 10−04 3.85 · 10−06 1.90 · 10−06 1.44 · 10−07

N(3) 1.46 · 10−03 1.94 · 10−04 2.53 · 10−05 9.16 · 10−06 3.73 · 10−07

MN(5) 1.51 · 10−03 1.74 · 10−04 2.74 · 10−05 2.08 · 10−06 3.00 · 10−07

SN(5) 2.92 · 10−03 6.67 · 10−04 2.36 · 10−05 2.55 · 10−06 1.34 · 10−07

Table 6. Global errors of variable step size iterative algorithms based on E-method
(4) with Algorithm 2 to control step size and with extrapolation (εl = εg)

Type of required accuracy
iteration εg = 10−03 εg = 10−04 εg = 10−05 εg = 10−06 εg = 10−07

SI(9) 1.54 · 10−04 1.95 · 10−05 1.71 · 10−06 2.00 · 10−07 1.96 · 10−08

N(3) 2.89 · 10−04 3.60 · 10−05 3.15 · 10−06 4.44 · 10−07 4.27 · 10−08

MN(5) 2.16 · 10−04 2.85 · 10−05 3.28 · 10−06 4.79 · 10−07 4.02 · 10−08

SN(5) 1.63 · 10−04 3.38 · 10−05 2.80 · 10−06 5.04 · 10−07 4.09 · 10−08

We see that the local step size selection is quite efficient for all the types
of iterations, but, unfortunately, it does not allow to find automatically the
numerical solution with the accuracy set by the user. To improve it, we have to
involve a global error control in the step size selection procedure.

By this reason, we apply the local-global step size selection developed with
the aim of controlling the global error of Runge-Kutta formulas in [9] to our
E-methods with high derivatives. First, we suppose that the numerical solution
x̃k has been computed at the point tk with an accuracy of O(τ2p+5

k ). Second, the
local and global errors tolerances εl and εg have been given. Third, we assume
that some step size τk has been fixed. Then the algorithm of the local-global
step size selection for method (2) is presented as follows:

Algorithm 2: Local-global step size control

Step 1. By Algorithm 1, find estimates∆x̃k+1 ∆x̃k+2 of the local error of method
(2) at the points tk+1, tk+2 and step sizes τ̃k, τ̃k+1 for the tolerance εl (change
the step size τk, if necessary).

Step 2. Determine the coefficient of the principal term of the local error
ψ̂2p+5(tk+1).

Step 3. Compute the coefficient of the principal term of the global error
ψ2p+4(tk+1) by the formula

ψ2p+4(tk+1) :=
(
En − τk∂xg(tk+1, x̃k+1)

)−1(
τkψ̂2p+5(tk+1)

)
. (14)

Step 4. Find an estimate ∆ψ2p+4(tk+1) of the local error of method (14) by the
Richardson extrapolation or by two one-step methods of different orders (see
[9], for details).
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Step 5. If ‖∆ψ2p+4(tk+1)‖ > εg/100 then calculate a new step size τk as shown
in Algorithm 1 and go to Step 1,

else q :=
[
τk

(
‖ψ2p+4(tk+1)‖ /εg

)1/(2p+4)
]

+ 1.

Step 6. If q > 1 then τk := τk/q and go to Step 1,
else x̃k+1 := x̃k+1 +∆x̃k+1, ∆x̃k+1 := ∆x̃k+2 and τk+2 := τ̃k+1.

Step 7. tk := tk + τk, k := k + 1 and go to Step 1.

Here, the square brackets mean an integer part of the number. A fuller descrip-
tion of Algorithm 2 for the iterative E-methods with high derivatives will appear
in [10].

If we now test our iterative E-methods with Algorithm 2 to select a step size
on problem (8) we come to Table 6. These data show the great advantage of
the local-global step size control (Algorithm 2) over the local one (Algorithm 1),
if we compare the global errors obtained in the last numerical experiment with
Table 5 . Thus, E-methods presented in the paper together with the local-global
step size control can be a good computational technique to solve many practical
problems including stiff ones.
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