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Abstract. Efficiency of the preconditioning methodology for an itera-
tive solution of discrete stress analysis problems is studied in this article.
The preconditioning strategy is based on space decomposition and sub-
space correction framework. The principle idea is to decompose a global
discrete system into a sequence of scalar subproblems, corresponding to
the different Cartesian coordinates of the displacement vector. The scalar
subproblems can be treated by a host of direct and iterative techniques,
however we restrict ourselves to a “black-box” application of the direct
sparse solvers and the scalar algebraic multigrid (AMG) method. The
subspace correction is performed in either block diagonal or block lower
triangular fashion. The efficiency and potential limitations of the pro-
posed preconditioning methodology are studied on stress analysis for 2D
and 3D model problems from microfabrication technology.

1 Introduction

Stress analysis is an essential part of modelling and design of complex phys-
ical and mechanical systems that consist of a variety of structural elements
with different mechanical properties and intrinsic built-in stress distributions.
The underlying multi-layer material geometries (with potentially very complex
shapes) are usually partitioned by general unstructured grids. The governing
stress equations are discretised by the finite element method. This procedure
leads to the solution of large sparse linear algebraic systems with a non-regular
sparsity pattern and poor equations scaling.

The problem of designing efficient solution methods for stress analysis has
been studied by many authors. Some of this work covers specific topics, such
as methods for thin domains in 3D [12], mixed and penalty methods for incom-
pressible problems [8], and the AMLI methods for compressible problems [1].
The optimal and nearly optimal preconditioners for Krylov subspace methods
can often be designed within a general framework of space decomposition and
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subspace correction (SSC) methods [19]. The idea behind the SSC strategy is
to decompose, in a stable manner, the global finite dimensional space into a set
of local subspaces. The global solution is obtained by the suitable combination
of the local subspace problem solutions. The basis for the space decomposition
for stress analysis is formed from the Cartesian components of the displacement
vector. In this way, the local subspace problems represent material displacement
along a single Cartesian coordinate, provided that displacements in other direc-
tions are fixed [1].

The local subspace problems have the properties of the scalar PDEs. Thus,
there exists a variety of efficient methods for solving and preconditioning of
these discrete linear systems. In [2] approximate factorisation is used to solve
the subproblems. In [13] the local subproblems are approximated by the additive
multilevel method (AMLI). In our study we adopt two different strategies for
the solution of the local subproblems: direct sparse factorisation and the approx-
imation by the scalar algebraic multigrid (AMG) solver. The main idea behind
this choice is to implement the whole solver in a “black-box” fashion by using
publicly available codes for both the Krylov solver and the local subproblems’
solvers/preconditioners. Direct sparse solvers are not (asymptotically) the op-
timal choice in this context, both in terms of the execution time and storage
requirements. On the other hand, AMG method offer the prospect of optimal
scaling with problem size [16], [17]. It is developed essentially for stiffness matri-
ces corresponding to scalar elliptic PDEs (M-matrices). Thus, the scalar AMG
solver is a suitable choice for preconditioning of the local subproblems.

This article is organised as follows. In Section 2 we introduce the physical
problem and give details of the finite element discretisation. Section 3 describes
our preconditioning strategy. In Section 4 we present numerical examples from
microfabrication technology modelling. The aim is to demonstrate efficiency of
the proposed methodology, as well as to outline some of its limitations and
potential problems.

2 Problem Formulation

Deformation of a continuous material body occupying a bounded domain Ω ⊂ �d

(d = 2, 3) is described by the following boundary value problem

−∇·σ(ū) = f̄ in Ω; ū = ūD on ∂ΩD; σ(ū)n̂ = ūN on ∂ΩN . (1)

In (1) σ(ū) denotes the Cauchy stress tensor, ū is the displacement vector, and
f̄ = is the body force vector. The vector ūD represents the prescribed displace-
ment of the boundary segment ∂ΩD, while ūN is the surface traction of the
boundary segment ∂ΩN with outward unit normal vector n̂ (∂ΩD ∩ ∂ΩN = ∅,
∂ΩD ∪ ∂ΩN = ∂Ω). For linear elasticity, the stress tensor σ(ū) is related to the
strain tensor ε(ū) by Hooke’s law

σ(ū) = 2µε(ū) + λ(∇ · ū)I

where I is the identity tensor, and µ > 0 and λ > 0 are Lamé’s coefficients,
which, in turn, depend on Young’s modulus and the Poisson ratio [8]. Note that
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in this study we consider only the cases of compressible linear elasticity, when ν
is bounded away from 0.5.

The variational stress analysis problem reads as follows: Find ū ∈ [V (Ω)]d

such that
E(ū, v̄) = F (v̄) ∀v̄ ∈ [V0(Ω)]d, (2)

where V0(Ω) = H1
0 (Ω) is the standard Sobolev space of functions defined on Ω

with the homogeneous Dirichlet boundary conditions on ∂ΩD. It is possible to
prove that problem (2) has a unique solution (see [5]). In (2) E(ū, v̄) represents
the bilinear energy functional, and F (v̄) is the load vector functional (see [10]).

The discrete stress analysis problem can be obtained from (2) by applying
the Galerkin projection of V (Ω) onto Vh(Ω) ⊂ V (Ω). In this way we obtain the
problem: find ūh ∈ [Vh(Ω)]d such that

E(ūh, v̄h) = F (v̄h) ∀v̄h ∈ [Vh0(Ω)]d.

In our case, Vh(Ω) is the space of piecewise linear polynomials that correspond to
a given partition of the domain Ω into disjoint triangles/tetrahedra (2D/3D). If
we introduce the nodal basis set Vh(Ω) = span{φr}N

r=1, the discrete displacement

vector component ui can be written as ui =
N∑

r=1
ur

i φr, i = 1, . . . , d, with ur
i being

the unknown displacement nodal coefficients along the ith Cartesian coordinate.
By adopting for the discrete test space Vh0(Ω) the same basis set as for Vh(Ω),
we obtain a system of d · N linear algebraic equations

d∑

j=1

N∑

s=1

Ars
ij us

j = fr
i , i = 1, . . . , d; r = 1, . . . , N, (3)

with

Ars
ij = µ

d∑

k=1

(∂kφr, ∂kφs)δij + µ(∂jφr, ∂iφs) + λ(∂jφs, ∂iφr)

f i
r = (fi, φr) + b.t.,

where (·, ·) denotes the usual scalar product in L2(Ω).

3 Preconditioning Methodology

The large, sparse linear system (3) can be solved by a host of iterative and
direct techniques [3]. In this article we study the efficiency of the preconditioned
Krylov subspace methods. In preconditioning, the aim is to design a matrix M
(called the preconditioner) which is spectrally close to the coefficient matrix A,
but simple to assemble and compute the action of its inverse. The aim is that
the preconditioned matrix M−1A has a small number of distinct eigenvalues
with large multiplicity, or that the spectrum of M−1A is tightly clustered and
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bounded by the quantities that are (ideally) independent of the discretisation
parameter h and other problem parameters.

In order to solve the system (3) by the SSC method, it is necessary to decom-
pose the discrete finite element space Vh(Ω) into a sum of subspaces V

(i)
h (Ω).

Furthermore, the robust and effective implementation of SSC methods requires
an efficient solution of the subspace problems. In this article we study two tech-
niques: direct sparse solution of the subproblems, and the approximate solu-
tion of the subproblems by the scalar AMG. In our methodology we adopt a
component-wise space decomposition, where for ū ∈ V

(i)
h (Ω) we have uj = 0 if

i 	= j [1]. In the case of block diagonal subspace correction the preconditioner
is defined as MD = D, while in the case of block lower triangular subspace
correction we have ML = D + L (L is the block lower triangular part of A).

We comment briefly on the suitability of the AMG as an approximate solver
for the local subproblems. The local subspace operators

D(u, v) = µ
∑

i

(∇ui, ∇vi) + (λ + µ)
∑

i

(∂iui, ∂ivi) (4)

are anisotropic as the second sum contains div-type operators. In our approach
we apply scalar AMG as a “black-box” solver to the entire discrete local sub-
problems (4). Because of the coarsening strategy adopted in AMG (coarsening
is performed in the directions in which the error varies smoothly [17]), we expect
efficient performance of the AMG with respect to anisotropies and discontinu-
ities along the different material interfaces. The possible scenarios where the
AMG strategy may encounter difficulties are the cases of nearly incompress-
ible materials (λ → ∞), very thin domain structures (with large ratios between
the principal dimensions), and highly non-convex domains (see Example 2 in
Section 4).

4 Numerical Examples

A component based preconditioning strategy is practically tested on stress anal-
ysis problems in 2D and 3D that arise in microfabrication technology. However,
the suggested methodology is not restricted in any way to this particular appli-
cation. Microfabrication technology is concerned with the design and production
of microelectronic and micromechanical components [9].

Having established superiority of the component based preconditioning over
the standard ILU(0) preconditioning [10], we now examine the efficiency (in
terms of wall clock time and memory requirements) of our methodology when
various strategies are employed for the solution of local subproblems. For com-
pleteness we compare our results with a general direct sparse solver from the HSL
library [6]. First we give some implementation details. We adopt BiCGSTAB(2)
as a representative Krylov subspace method (see [15]). In our implementation,
in line with the strategy of developing a fully “black-box” solver, we take a
BiCGSTAB(	) implementation from the NAG library [11]. The exact version of
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the SSC preconditioner (with sparse direct factorisation of the blocks) is imple-
mented using the code HSL MA42 from the HSL library [6]. This code imple-
ments the frontal Gaussian elimination and is suitable for non-symmetric linear
systems [4]. We also use the MSRO strategy for reordering the equations within
each diagonal block [14], as implemented in the routine MC62 from the HSL
library [6]. An inexact version of the SSC preconditioner (with diagonal blocks
preconditioned by a small fixed number of AMG cycles) is implemented using
the well-established and publicly available code AMG1R5 [16]. The approximate
AMG solving procedure consists of one V(1,1) cycle. Two model problems are
studied (one in 2D and one in 3D). The discrete linear systems (3) are generated
by the Taurus simulator [18]. The right hand side vector is chosen randomly
(although the elements of f are scaled appropriately in order to simulate the
realistic situation of a randomly distributed load).

Next we describe our experiment environment. All tests are performed on
an Origin 3400 architecture with 16 R12000 processors (although no parallelism
is considered). A single R12000 processor has a clock speed of 400MHz, corre-
sponding to a theoretical peak performance of 800MFlops. The system has 4GB
of RAM. All our codes are written in Fortran 90 and optimised using the high
compiler optimisation.

Example 1. We consider the model problem in 3D. The domain represents
one quarter of the intermediate structure (the domain is restricted by using suit-
able symmetries) during fabrication of the Fin Field Effect Transistor (FinFet)
(see [18]). The FinFet technology offers the possibility for further miniaturisa-
tion of the transistor structure to nanoscale dimensions (< 50nm). The present
structure consists of four different material domains, which have different coef-
ficients of thermal expansion. During production the whole structure is subject
to high temperature variations. This process causes the build-up of stress in the
structure (see [7]). The domain is discretised by unstructured grids of various
sizes. The idea of studying this domain geometry is to test the robustness of the
proposed iterative technique in the case of relatively “thin” domain geometries
in 3D. The standard discretisation and solution techniques may encounter dif-
ficulties in this context [12]. Table 1 gives the number of iterations (Nit) and
the total execution time (Tt) required by the preconditioned BiCGSTAB(2) al-
gorithm to reduce the initial residual below 10−6 for both the exact (E) and
inexact (I) version of the SSC preconditioner. In Table 1, n denotes the total
dimension of the problem and MD and ML stand for the block diagonal and the
block triangular versions of the preconditioner.

The asterix in the last column of Table 1, part (E) indicates that the matrix
size is beyond the memory capacity of a particular architecture (we did not use
direct access files for storing partially factorised matrices, see [6]). It can be con-
cluded that this implementation gives a spectrally independent preconditioner,
however, neither the execution time nor the storage requirements are optimal.

Next we report the results obtained for the inexact version of the SSC precon-
ditioner. Part (I) of Table 1 presents the iteration counts and the execution time
of the BiCGSTAB(2) algorithm with the inexact SSC preconditioner. In this
case we observe a very moderate growth in the iteration counts. However, AMG
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is an optimal solver both in terms of execution time and memory requirements.
The total storage for the largest case from Table 1, part (I) is approximately
900MB. The optimality in terms of execution time is reflected in the rows Tt of
Table 1, part (I). These times scale near linearly with the problem size and are
much smaller than in the exact case.

Finally, for completeness, we contrast the timing results from parts (E) and
(I) in Table 1 with the execution times required by a general sparse direct solver
to complete this task (part (D) of Table 1). In this context we employ HSL MA42
code with the MSRO reordering of the equations (MC62 code) [6].

Table 1. Iteration counts and the execution time (in seconds) of the BiCGSTAB(2)
algorithm for the case of the exact (E) SSC preconditioner (direct factorisation of
the discrete local subproblems by HSL MA42) and the inexact SSC preconditioner (I)
(preconditioning of the local subproblems by one V(1,1) AMG cyle). Execution time
(in seconds) of the direct (D) sparse solver HSL MA42.

n 21987 38550 51120 113085 224292
Nit 6 6 6 6 *

MD
Tt 17.16 32.12 65.90 698.31 *

E
Nit 4 4 4 4 *

ML
Tt 16.51 30.00 62.32 675.98 *
Nit 8 10 10 12 14

MD
Tt 4.54 9.57 12.57 37.37 82.04

I
Nit 6 8 6 8 12

ML
Tt 4.38 9.42 10.58 30.73 87.75

D Tt 47.76 86.77 223.48 * *

Example 2. We examine the efficiency of our methodology when applied to
a model problem in 2D. The structure represents a trench obtained by etching
the silicon substrate and depositing the nitride over it (see [18]). In microfabrica-
tion technology trenches are frequently used for the electromagnetic isolation of
integrated active and passive components [20]. The main feature of this problem,
as opposed to Example 1 and the example from [10] is that the domain Ω is not
convex. This can potentially cause some difficulties to the iterative solver using
the AMG preconditioner. In this example, stress in the structure is caused by
the deposition of a material (nitride in this case) with intrinsic built-in stress.
In the following experiments we are following exactly the same procedure as in
Example 1. Table 2 presents the iteration counts and the execution time of the
preconditioned BiCGSTAB(2) algorithm with the exact (E) and inexact (I) ver-
sion of the SSC preconditioner needed to reduce the infinite norm of the residual
below 10−6.
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Table 2. Iteration counts and the execution time of the BiCGSTAB(2) algorithm
for the case of the exact (E) version SSC preconditioner (direct factorisation of the
discrete local subproblems by HSL MA42) and the inexact SSC preconditioner (I)
(preconditioning of the local subproblems by one V(1,1) AMG cyle). Execution time
(in seconds) of the direct (D) sparse solver HSL MA42.

n 4000 9860 17464 34988 69316 136770
Nit 20 24 20 20 24 22

MD
Tt 1.08 4.07 8.42 24.37 67.05 212.58

E
Nit 14 16 16 18 20 18

ML
Tt 0.89 3.13 7.55 23.50 61.52 200.14
Nit 50 58 72 84 92 98

MD
Tt 1.15 3.66 9.37 25.09 59.80 135.95

I
Nit 38 46 58 66 72 76

ML
Tt 0.91 3.38 8.19 21.40 51.86 115.20

D Tt 0.56 2.44 9.98 27.52 118.92 *

From Table 2, part (E) we can conclude that the exact SSC preconditioner
exhibits nearly optimal convergence characteristics in this context (although a
higher number of iterations is required than in Example 1 to achieve the pre-
scribed tolerance). From Table 2, part (I) it can be concluded that the inexact
version of the SSC preconditioner encounters some problems with the conver-
gence in this context. Moreover, the convergence characteristics exhibit an ir-
regular pattern. Although the inexact version of the SSC preconditioner is not
vastly superior in terms of the execution time as in Example 1 (compared to
the exact version), it still has the advantage of substantially lower memory re-
quirements (for the case n = 136770 the total memory requirement is 260MB,
compared to 3.7GB for the exact case, if the direct access files are not used).
Finally, we contrast the timing results of the iterative method with the time
required by the sparse direct solver HSL MA42 (Table 2, part (D)) to complete
the same task. Again, direct access files are not used in this case.

From Table 2 it can be concluded that in the case of the 2D problem with
non-convex domain geometry the iterative method is still faster than the direct
solver, but the superiority is not as comprehensive as in the 3D case. Of course,
the storage requirements argument is still on the side of the iterative solver. The
potential reason for slow convergence of the inexact solver is that the coarse level
approximations of the local subproblems do not reflect the domain geometry with
sufficient accuracy. This problem can be partially alleviated by restricting the
number of coarse levels in the automatic coarsening process [16]. However, this
can cause relatively large problem sizes at the coarsest level (with fairly dense
coefficient matrices). This can potentially reduce the number of iterations, but
will lead to increase of the execution times.
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