A Modular Design for Parallel Adaptive
Finite Element Computational Kernels

Krzysztof Banas

Section of Applied Mathematics ICM, Cracow University of Technology,
Warszawska 24, 31-155 Krakéw, Poland, Krzysztof .Banas@pk.edu.pl

Abstract. The paper presents modular design principles and an imple-
mentation for computational kernels of parallel adaptive finite element
codes. The main idea is to consider separately sequential modules and to
add several specific modules for parallel execution. The paper describes
main features of the proposed architecture and some technical details
of implementation. Advanced capabilities of finite element codes, like
higher order and discontinuous discretizations, multi-level solvers and
dynamic parallel adaptivity, are taken into account. A prototype code
implementing described ideas is also presented.

1 Introduction

The often used model for parallelization of finite element codes is to consider
a library of communication routines that handle transfer of finite element data
structures, taking into account complex inter-relations between them [1]. After
the transfer of e.g. an element data structure, all required connectivities (such
as, for example, constituting faces and vertices, neighboring elements, children
and father elements) must be restored, either directly from transfered data or
by suitable computations. In such a model, main modules of a finite element
code, most importantly mesh manager, must handle parallelism explicitly, by
calling respective transfer procedures. As a result, despite the splitting between
a communication library and a finite element code, both have to be aware of
finite element technical details and parallel execution details.

In the second popular model [2] standard communication routines are em-
ployed. Then, parallelization concerns the whole code (or its main parts). This
effectively means that sequential parts are replaced by new parallel components.

In the present paper an alternative to both approaches is proposed. The main
modules of sequential finite element codes (except linear solver) remain unaware
of parallel execution. Additional modules are added that fully take care of par-
allelism. These modules are tailored to the needs of parallelization of sequential
parts, in order to achieve numerical optimality and execution efficiency.

The paper is organized as follows. In Sect. 2 some assumptions on finite el-
ement approximation algorithms and codes, that are utilized in parallelization
process, are described. The next section concerns assumptions on a target envi-
ronment for which parallel codes are designed. Algorithms fitting the proposed

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 155-[I62] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

156 K. Banas

model of parallel execution are described in Sect. 4. Section 5 presents an ar-
chitecture of parallel codes, with main parallel modules specified, while Sect. 6
considers in more detail the main tasks performed by parallel modules. Section 7
concerns implementation of parallel modules. Section 8 describes some numerical
experiments. Conclusions are presented in Sect. 9.

2 Sequential Algorithms and Codes

The model of parallelization presented in the paper is applicable to a broad class
of finite element codes, including complex adaptive codes for coupled multi-
physics problems. It is assumed that several meshes and several approxima-
tion fields may be present in a simulation. Meshes may be adaptive and non-
conforming. Approximation fields may be vector fields and may provide higher
order approximation. All types of adaptivity, including anisotropic and hp, can
be handled. The interface between the finite element code and a linear solver
allows for the use of multi-level (multigrid) solvers.

In a prototype implementation, described in later sections, it is assumed that
the finite element code is split into four fundamental modules, based on four sep-
arate data structures [3]: mesh manipulation module with mesh data structure,
approximation module with finite element approximation data structure, linear
equations solver (or interface to an external solver) with multi-level matrix data
structure and problem dependent module with all problem specific data. Al-
though this splitting is not necessary in order to apply parallelization process
described in the paper, it facilitates the presentation of the process as well as its
practical implementation.

3 Target Parallel Execution Environment

The architecture is developed for the most general to-date execution environ-
ment, a system with message passing. Any hardware system that supports mes-
sage passing may be used as a platform for computations.

Naturally for PDEs, the problem and program decomposition is based on
spatial domain decomposition. The computational domain is partitioned into
subdomains and main program data structures are split into parts related to
separate subdomains. These data structures are distributed among processes
executed on processors with their local memories. Processes are obtained by the
Single Program Multiple Data (SPMD) strategy and realize main solution tasks
in parallel. The most natural and efficient is the situation where there is one-to-
one correspondence between processes and processors in a parallel machine, but
other mappings are not excluded. In the description it is assumed that there is
a unique assignment: subdomain—process—processor—local memory.

A Modular Design 157

4 Parallel Algorithms

From the three main phases of adaptive finite element calculations, creating a
system of linear equations, solving the system and adapting the mesh, only solv-
ing the system is not “embarrassingly” parallel. Numerical integration, system
matrix aggregation, error estimation (or creation of refinement indicators), mesh
refinement /derefinement are all local processes, on the level of a single mesh en-
tity or a small group of entities (e.g. a patch of elements for error estimation).

Thanks to this, with a proper choice of domain decomposition, it is possible to
perform all these local (or almost local) tasks by procedures taken directly from
sequential codes. There must exist however, a group of modules that coordinate
local computations spread over processors.

The only part of computational kernels that involve non-local operations
is the solution of systems of linear equations. However, also here, the choice of
Krylov methods with domain decomposition preconditioning guarantees optimal
complexity with minimal number of global steps.

5 An Architecture for Parallel Codes

Fig.[I presents an architecture for parallel adaptive finite element computational
kernels. Four fundamental sequential modules are separated from additional,
parallel execution modules. The structure of interfaces between all modules is
carefully designed to combine maintainability, that require minimal interfaces,
with flexibility and efficiency, for which more intensive module interactions are
often necessary.

The main module to handle tasks related to parallel execution is called do-
main decomposition manager, according to the adopted strategy for paralleliza-
tion. It has a complex structure that reflects the complex character of performed
operations.

6 Main Parallel Solution Tasks

Main tasks related to parallel execution of finite element programs include:

— mesh partitioning

— data distribution

— overlap management

— maintaining mesh and approximation data coherence for parallel adaptivity
— load balancing and associated data transfer

— supporting domain decomposition algorithms

Mesh partitioning, algorithms and strategy, is not considered in the current
paper. It is assumed that there exist an external module that provides non-
overlapping mesh partitioning according to specified criteria. The criteria must
include the standard requirements for keeping load balance and minimizing the

158 K. Bana$

= e e e e e e e e e e e e e e e = = = = -
|
I Finit Submodule for Interface between Adaptivity
mite linear solver module and
1 S submodule
| element . mesh and approximation modules I
|
I core ! Coefficients | Problem dependent |
I | submodule module !
l : I :
! : . ' ;
I Linear solver Approximation | _| Mesh manipulation | |
1 | interface module module module |
| [A A :
1 Sequential i_'_'_'_'_'_'_'_'_'_]_‘,_
Lo Mo - Parallel execution
1 interf modul
_ - -, Parallel interface module
i Linear ' L . N e
' solver 1 ' Linear solver Approximation specific
. ' I || interface submodule submodule
|
| Overlap management Mesh specific
I submodule submodule
________ |
| Mesh | 1 Mesh partitioner Domain decomposition
E partitioner =~ interface submodule manager module
________ 1
|
I ¢ A\
I Parallel communication library
I interface module
e e e e e e - - - - # _____
— ™ One-way interfaces CTTTTTmomm e i
i Parallel communication library !
—~& - - - (all-backs | !

Fig. 1. Diagram of the proposed modular architecture for computational kernels of

parallel adaptive finite element codes

extent of inter-subdomain boundary. Keeping load balance for all stages of com-
putations, especially taking into account multi-level linear equations solvers [4],
may be a difficult, if not impossible, task. Usually some compromise is postulated

among requirements posed by different phases of computations.

A Modular Design 159

Each mesh entity (and in consequence the related approximation data struc-
ture) is assigned to a single submesh (subdomain). Subdomains are distributed
among processes (processors, local memories), creating an ownership relation
between mesh entities and processes (processors, local memories). Each local
memory stores all data related to owned entities and each processor performs
main solution tasks operating on owned entities.

The existence of overlap (i.e. storing in local memory not owned, “ghost”,
mesh entities) is advantageous for several tasks in the solution procedure. These
tasks include obviously multi-level overlapping domain decomposition precondi-
tioning. Also error estimation, mesh refinement and derefinement benefit from
storing data on neighbors of owned entities. The existence of overlap allows for
utilizing more local operations and reduces the inter-processor communication.
In exchange, more storage is required locally and some operations are repeated
on different processors.

The amount of overlap depends on the profits achieved from local storage,
which further depends not only on utilized algorithms, but also on computer
architectures and interconnection networks employed. For implementation it is
assumed that the amount of created overlap is indicated by the maximal extent
of data, not available in the initial non-overlapping decomposition, necessary for
any task operating on local data. Such a choice was made to adapt codes to
slower parallel architectures based on networks.

It is a task of domain decomposition manager to create an overlap and to en-
sure that the overlap data is in a coherent state during computations. Proper val-
ues have to be provided, despite the fact that different modules and routines use
and modify different parts of overlap data at different times. This task is impor-
tant for parallel mesh modifications, especially when irregular (non-confirming)
meshes are allowed.

Mesh modifications create load imbalance in the form of improper distribu-
tion of mesh and approximation entities between subdomains. It is assumed that
in the code there is a special, possibly external, module that computes “proper”
data distribution. The original mesh partitioner or a separate repartitioner can
be used. Additionally to standard partitioning requirements, the module should
also aim at minimizing data transfer between processors when regaining balance.

Taking the new partition supplied by the repartitioning module as an input,
the domain decomposition module performs mesh transfer. To minimize data
traffic, mesh entities must not be transfered separately, but grouped together,
to form a patch of elements. Necessary parts of data structure, related to whole
patches, are then exchanged between indicated pairs of processors.

Supporting domain decomposition algorithms consist in performing standard
vector operations in parallel (such as scalar product or norm) and exchanging
data on degrees of freedom close to inter-subdomain boundary between proces-
sors assigned to neighboring subdomains. Once again the operations can be cast
into the general framework of keeping overlap data (approximation data in this
case) stored in local memories in a coherent state. A proper coordination of data
exchange with multi-level solution procedure has to be ensured.

160 K. Banas

7 Implementation

The basis for parallel implementation is formed by an assumption that every
mesh entity (together with associated approximation data structure containing
degrees of freedom) is equipped with a global (inter-processor) identifier (IPID).
This identifier can be understood as a substitute for a global address space used
in sequential codes. The IPID is composed of a processor (subdomain) number
and a local (to a given processor) identifier. IPIDs are not known to sequential
modules of the code. The domain decomposition manager creates an overlap and
assigns IPIDs to all mesh entities. Whenever data not stored locally is necessary
for computations, domain decomposition manager can find its owning processor
and requests the data using suitable calls. With this implementation, keeping
the local data structures in a coherent state means keeping a unique assignment
of IPIDs to all mesh and approximation entities and data structures.

According to the design assumptions, the changes in the sequential routines
are kept minimal. During refinements, children entities remain local to the same
processor as their parents. During derefinements, all children entities are either
already present locally or are transferred to one chosen processor (e.g. if multi-
level computations are performed, the chosen processor may be the one assigned
to a parent entity). To assign IPIDs to newly created entities, their lists are
passed from mesh manipulation module to domain decomposition manager.

For the linear solver, additional routines are created for performing global
vector operations and for exchanging data on overlap DOFs. In the proposed
implementation these routines are simple wrappers for domain decomposition
manager routines that perform actual operations.

7.1 Interfaces with Communication Libraries

It is assumed that codes use a set of generic send/receive and group commu-
nication operations. Additionally, initialization and finalization procedures are
specified. All these have to be implemented for various standard communication
libraries. In the example implementation a model of buffered send/receive oper-
ations is employed. The data to be sent are first packed into a buffer and then
the whole buffer is sent. Procedures in that model can easily be implemented for
MPI standard, as well as packages like PVM.

8 Numerical Examples

Two, simple from numerical point of view but demanding from the point of
view of technical difficulties, computational examples are presented as a proof
of concept. Both use a prototype implementation of the presented architecture
in a discontinuous Galerkin hp-adaptive parallel code for 3D simulations.

The first example is a pure convection problem, with a rectangular pattern
traveling through a 3D medium. Dynamic adaptivity is employed in this case
with two levels of refinement, 1-irregular meshes and adaptations performed after

A Modular Design 161

each time step. To minimize interprocessor communication for small fluctuations
of subdomain sizes, load imbalance (measured by the ratio of the maximal or
minimal number of degrees of freedom to the average number of degrees of
freedom in a subdomain) up to 10% is allowed. When this limit is exceeded,
repartitioning takes place and the balance is regained through the transfer of
mesh entities.

In the example run, four processors and four subdomains were used that
resulted in the average number of degrees of freedom around 5000 per subdomain.
Mesh transfers were performed on average after each three steps. As a hardware
platform a 100Mbit Ethernet network of PCs was used. PCs were equipped with
1.6 GHz Pentium 4 processors and 1 GByte memory. An average mesh transfer
involved several thousand mesh entities. The overall speedup for four processors
was equal to 2.67, taking into account times for repartitioning and mesh transfer.

Table 1. Parallel performance for 10 iterations of the preconditioned GMRES method
and discontinuous Galerkin approximation used for solving Laplace’s equation in a box
domain (description in the text).

Single level preconditioner
Npor |Nproc|Error*10°[Rate| Time [Speed up|Efficiency
3129 344 2 48.041]0.738| 70.76 1.00 100%
4 47.950(0.738| 35.63 1.98 99%
8 48.748(0.739| 17.71 3.99 100%

Three level preconditioner

Npor |Nproc Error*10°|Rate| Time Speed up|Efficiency
3129 344 2 0.027]0.350|111.16 1.00 100%
4 0.027(0.350| 57.76 1.92 96%
8 0.027(0.348| 33.15 3.35 84%

The second example is Laplace’s equation in the box [0, 1] with assumed
known exact solution. Results of two experiments are presented. In the first ex-
periment the same network of PCs as for convection problem was used. The
experiment consisted in solving the problem for a mesh with 3 129 344 degrees
of freedom, obtained by consecutive uniform refinements of an initial mesh. Sin-
gle level and three level multigrid preconditioning for the GMRES solver with
Schwarz methods as smoothers was employed for solving linear equations. Ta-
ble [] presents results for 10 iterations of the preconditioned GMRES method,
to focus on the efficiency of parallel implementation of the code. Ny, is the
number of workstations solving the problem. Error is the norm of residual after
10 GMRES iterations and Rate is the total GMRES convergence rate during
solution. Execution time Time is a wall clock time, that includes generation of
linear systems (numerical integration) as well. Speed-up and efficiency are com-
puted in the standard way. The run with 2 PCs is taken as a reference since the
problem was too large to fit into the memory of a single PC.

162 K. Banas

The second experiment for the second example was undertaken to test the
scalability of the system. The experiment was performed on a cluster of 32 Pen-
tium 3 PCs with 512 MByte memory each and 100 Mbit Ethernet interconnec-
tion. The mesh was obtained by another uniform refinement of the mesh from
the previous experiment yielding 25 034 752 degrees of freedom. The data struc-
ture occupied 4.5 GBytes of memory and parallel adaptations were necessary
to reach this problem size. Because of memory constraints (16 GBytes) a single
level Schwarz preconditioning for GMRES was used, resulting in convergence
rate equal to 0.9. The error reduction of 10~ was obtained in 200 iterations
that took 20 minutes to perform. Despite the increase in the number of itera-
tions, the scalability of parallel implementation (related to the time of a single
iteration) was maintained.

9 Conclusions

The presented model allows for relatively easy parallelization of existing finite
element codes, with much of sequential parts of codes retained. The results of
numerical experiments with the prototype implementation show good efficiency,
making a model feasible solution for migrating finite element codes to high per-
formance parallel environments.

Acknowledgments. The author would like to thank Prof. Peter Bastian from
IWR at the University of Heidelberg for invitation to IWR and granting access to
IWR’s computational resources, used in the last described numerical experiment.
The support of this work by the Polish State Committee for Scientific Research
under grant 7 T11F 014 20 is also gratefully acknowledged.

References

1. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H.,
Wieners, C.: UG - a flexible software toolbox for solving partial differential equa-
tions. Computing and Visualization in Science 1 (1997) 27-40

2. J.-F.Remacle, O.Klaas, J.E.Flaherty, M.S.Shephard: A Parallel Algorithm Oriented
Mesh Database. Report 6, SCOREC (2001)

3. K.Banas$: On a modular architecture for finite element systems. I. Sequential codes.
Computing and Visualization in Science (2004) accepted for publication.

4. Bastian, P.: Load balancing for adaptive multigrid methods. SIAM Journal on
Scientific Computing 19 (1998) 1303-1321

	Introduction
	Sequential Algorithms and Codes
	Target Parallel Execution Environment
	Parallel Algorithms
	An Architecture for Parallel Codes
	Main Parallel Solution Tasks
	Implementation
	Interfaces with Communication Libraries

	Numerical Examples
	Conclusions

