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Abstract. This study proposes a new approach to feature selection and the
identification of underlaying factors. The goal of this method is to visualize and
extract information from complex and high dimensional data sets. The model
proposed is an extension of  Maximum Likelihood Hebbian Learning [14], [5],
[15] based on a family of cost functions, which maximizes the likelihood of
identifying a specific distribution in the data while minimizing the effect of
outliers [7], [10]. We demonstrate a hierarchical extension method which pro-
vides an interactive method for identifying possibly hidden structure in the da-
taset. We have applied this method to study the thermal evolution of several
construction materials under different thermal and humidity environmental
conditions.

1   Introduction

We introduce a method which is closely related to exploratory projection pursuit. It is
an extension of a neural model based on the Negative Feedback artificial neural net-
work [3]. This method is called Maximum-Likelihood Hebbian learning (ML) [5],
[14], [12].

In this paper we provide a hierarchical extension to the ML method. This extension
allows the dynamic investigation of a data set in which each subsequent layer extracts
structure from increasingly smaller subsets of the data. The method reduces the sub-
space spanned by the data as it passes through the layers of the network therefore
identifying the lower dimensional manifold in which the data lies.

The Negative Feedback artificial neural network has been linked to the statistical
techniques of Principal Component Analysis (PCA)[3], Factor Analysis [2] and Ex-
ploratory Projection Pursuit (EPP) [11]. The originality of this paper is the develop-
ment and application of Hierarchical Maximum Likelihood Hebbian Learning (HML)
to provide a novel approach  different than those found by the contemporary statisti-
cal technique of PCA.
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2   The Negative Feedback Neural Network

We introduce the Negative Feedback Network [3].
Consider an N-dimensional input vector, x, and a M-dimensional output vector, y ,

with 
ijW  being the weight linking input j  to output i  and let η  be the learning

rate.
The initial situation is that there is no activation at all in the network. The input

data is fed forward via weights from the input neurons (the x-values) to the output
neurons (the y-values) where a linear summation is performed to give the activation
of the output neuron. We can express this as:
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The activation is fed back through the same weights and subtracted from the inputs
(where the inhibition takes place):
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After that simple Hebbian learning is performed between input and outputs:

ijij yeW η=∆     (3)
The effect of the negative feedback is to stabilise the learning in the network. Because
of that it is not necessary to normalise or clip the weights to get convergence to a
stable solution. Note that this algorithm is clearly equivalent to Oja’s Subspace Algo-
rithm[6] since if we substitute equation (2) in equation (3) we get:
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This network is capable of finding the principal components of the input data [3] in a
manner that is equivalent to Oja’s Subspace algorithm [6], and so the weights will not
find the actual Principal Components but a basis of the Subspace spanned by these
components.Writing the algorithm in this way gives us a model of the process which
allows us to envisage different models which would otherwise be impossible [5,6].

3   A Family of Learning Rules

It has been shown [8] that the nonlinear PCA rule
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can be derived as an approximation to the best non-linear compression of the data.
Thus we may start with a cost function
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( ) ( )( ){ }2
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which we minimise to get the rule(5). [10] used the residual in the linear version of
(6) to define a cost function of the residual

( )yxe WffJ −== 11 )( (7)

where 
2

1 .=f  is the (squared) Euclidean norm in the standard linear or nonlinear

PCA rule. With this choice of ( )1f , the cost function is minimized with respect to

any set of samples from the data set on the assumption that the residuals are chosen
independently and identically distributed from a standard Gaussian distribution [13].
We may show that the minimization of J is equivalent to minimizing the negative log
probability of the residual, ,e  if e is Gaussian.

Let ( ) )exp(1)( 2ee −= Zp (8)

The factor Z  normalizes the integral of ( )yp  to unity.

Then we [5] can denote a general cost function associated with this network as

KpJ +=−= 2)()(log ee (9)

where K is a constant. Therefore performing gradient descent on J we have
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where we  have discarded a less important term (see [9] for details).
In general [7], the minimisation of such a cost function may be thought to make

the probability of the residuals greater dependent on the probability density function
(pdf) of the residuals. Thus if the probability density function of the residuals is
known, this knowledge could be used to determine the optimal cost function.

[10] investigated this with the (one dimensional) function:
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with ε  being a small scalar 0≥ .
[10] described this in terms of noise in the data set. However we feel [12] that it is

more appropriate to state that, with this model of the pdf of the residual, the optimal

( )1f  function is the ε -insensitive cost function:
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( ) εee =1f    (13)

In the case of the Negative Feedback Network, the learning rule is
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In a more general situation let the residual after feedback has a probability density
function (pdf)[5,12,14]:
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Then we [5]  can denote a general cost function associated with this network as

KpJ p +=−= ||)(log ee  (17)

where K is a constant. Therefore performing gradient descent on J we have
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where T denotes the transpose of a vector.  We would expect that for leptokurtotic
residuals (more kurtotic than a Gaussian distribution), values of p<2 would be appro-
priate, while for platykurtotic residuals (less kurtotic than a Gaussian), values of p>2
would be appropriate.Therefore the network operation is:
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Weight change: ( ) 1||.. −=∆ p
jjiij eesignyW η (21)

[10] described their rule as performing a type of PCA, but this is not strictly true
since only the original (Oja) ordinary Hebbian rule actually performs PCA.  It might
be more appropriate to link this family of learning rules to Principal Factor Analysis
since this method makes an assumption about the noise in a data set and then removes
the assumed noise from the covariance structure of the data before performing a PCA.
We are doing something similar here in that we are basing our PCA-type rule on the
assumed distribution of the residual. By maximising the likelihood of the residual
with respect to the actual distribution, we are matching the learning rule to the pdf of
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the residual. Maximum Likelihood Hebbian Learning (ML) [5,12,14] has been linked
to the standard statistical method of  EPP [11,14].

4   Hierarchical Maximum Likelihood Hebbian Learning (HML)

There may be cases where the structure of the data may not be captured by a single
linear projection. In such cases a hierarchical scheme may be beneficial.

This can be done in two ways, firstly by projecting the data using the ML [5], [12],
[14] method, select the data points which are interesting and re-run the ML network
on the selected data. Using this method only the projections are hierarchical.

A second more interesting adaptation is to use the resulting projected data of the
previous ML network as the input to the next layer. Each subsequent layer of the
network identifying structure among fewer data points in a lower dimensional sub-
space.

The HML method can reveal structure in the data which would not be identified by
a single ML projection as each subsequent projection can analyse different sections of
the subspace spanned by the data. This method has an additional advantage that with
each sub-projection the number of samples and dimensionality of the data is reduced.
As this is a linear method, by the linear combination of all previous layers we can
identify the manifold in which the data points of interest lie.

5 Real Data Set and Experimental Results

The data used to illustrate our method is obtained from an experimental work which
goal is the analysis of the thermal transmission of several construction materials [16].
We want to analysis their similarities and differences of behaviour. For that reason we
have studied, in an independent way, the thermal transmission of these materials in a
stationary state and in a transitory state. The data is collected from a “thermal house”
with a heat source inside the house controlled by a thermostat outside of it. The house
was inside of an inhabited building. It is a closed cube, in which all of the four verti-
cal faces are made of different materials:
A piece of plywood (3 cm of thickness), a simple glass ( 1,8 cm of thickness),

A piece of plaster (1,5 cm of thickness), a piece of polystyrene (4 cm of thickness)
The experiment has been designed to register representative variables and them

have been measured inside and outside the house. So we have measured the inside
and outside environmental temperature, the inside and outside relative humidity, the
inside and outside surface temperature of each vertical face and the thermal flux of
each vertical face.

The initial situation is an equilibrium state between the inside and outside tem-
perature for both cases. These are the surface temperature and the environmental one.
Then the heat source is switched on until it reaches a stationary state. Once this state
is reached, we kept the heating on for a while and then we switched it off. The data
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recorded belong to a period which starts before the heating is switched on and fin-
ishes when the equilibrium state is reached after the heating is switched off.

We performs two series of measures with the same inside heat source. We do not
provide humidity in the first serie and we do it during the second serie of measures.
We have performs the same experiment several times.

In the following experiments we analyse the performance of the neural method
(HML) and highlight the differences in the projections obtained by PCA and ML. We
demonstrate also the HML method.

Comparison of PCA and ML on the Construction Materials Data Set
Figure 1 and Figure 2 show the behaviour of some thermal properties (the inside and
outside environmental temperatures, the inside and outside relative humidity and  the
inside and outside surface temperature) of the four vertical faces during the ascending
transitory state.

   Fig. 1. PCA on construction materials data.      Fig. 2. ML on construction materials  data

In Figure 1 and Figure 2 we show the comparison of PCA and ML projections of
the construction material data. ML (Fig.2) clearly shows greater separation in the
behaviour of different materials than is achieved with PCA (Fig.1). Figure 2 (ML)
shows that Polystyrene behaves very different than the other three materials. These
three materials (plywood, glass and plaster) have a similar behaviour. We could go
further and say that plywood and glass have some times almost the same behaviour.

Behaviour of Two Vertical Faces, One Made of Glass and the Other One Made
of Wood
In Figure 3 we show a representation of the behavior of some properties (inside and
outside temperature, relative inside and outside humidity, the inside and outside sur-
face temperature of each vertical face and their thermal flux) of two vertical faces,
one made of glass and the other one made of wood.

If we analyse Fig.3 we could see  that these two construction materials have quite
the same behaviour in terms of temperature, but the thermal fluxes are different.
These logic similarities and differences can not be observed by other classic models
used by physicists [16].

Symbol ● * □ <׀
Material Polystyrene Plywood Plaster Simple glass
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Fig. 3. ML on construction materials data.

Fig. 4. ML on construction materials data.

5.1   Results Using Hierarchical Maximum Likelihood Hebbian Learning

Fig.4. Representation of inside and outside temperature, relative inside and outside
humidity and the inside and outside surface temperature of each vertical face versus
time. The values correspond to the descendant transitory state. Fig.4 represents the
results obtained using ML.

An important advantage of the hierarchical model is that provides more informa-
tion in terms of inflexion points. This allows a better identification of different states
in the studied transitory state and the identification of changes of state.as we could see
in Fig.5.

Fig. 5. Result of HML on left cluster in Fig.4

In Fig.5 we can see that HML identifies the inflexion points for the construction
materials in a very clear way and gives us a new projection. It shows that the inflex-
ion points of the four materials take places at the same time. If we compare Fig.5 and
the temperature evolution plot (Fig.4) we may see some minimal temperature and
relative humidity fluctuations in an inhabited place.

Symbol Material
● Polystyrene
* Plywood
□ Plaster
<׀ Simple glass
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6   Conclusions

We have reviewed the recent method of ML, extend it to develop a hierarchical
method and compare it with a typical statistical technique. The method proposed in
this paper provides a novel way to extract more information from a particular good
projection and it gives a very clear method to analyse the thermal behavior of con-
struction materials. Future work will investigate further more complex data sets in
order to study materials with an unpredictable behavior and in extreme conditions.
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