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Abstract. In a high resolution SAR-satellite mission it is very impor-
tant to predict the flight trajectory of the satellite with a very high pre-
cision. Typically a SAR-satellite operates in near earth orbits. At this
altitude the orbit is influenced by several physical phenomena (gravity,
atmosphere, and air friction). The model to simulate these orbits should
represent these influences sufficiently well. A detailed model has been
build on the basis of the newest CHAMP gravity model and the MSIS86
atmosphere model. As a result of the complexity and the mathematical
characteristics of this model it is necessary to implement a high order
ODE-solver. Three different kinds of error are investigated to evaluate
the predictive power of the model: numerical error due to the approxi-
mation scheme, power series truncation error on the gravity model, and
statistical error due to parameter sensitivity. To this end an extensive
sensitivity analysis of thousands of model parameters is carried out.

1 Introduction

Elementary models for satellite orbits or celestial mechanics based on Newtons
Law of gravitation are well known text book examples for simulation courses
and numerical mathematics [1]. They assume an ideal model of the gravitational
field with spherical equipotential surfaces whereas air friction is neglected. In
contrast the modeling and simulation of real satellite orbits based on realistic
gravitational fields and including air friction is still a problem that is not satis-
factorily solved.

The development of high precision orbit models becomes necessary when
satellites aviate in low altitudes of less than 1000 km and additionally a very
precise tracking of the satellite flight trajectory is required. An important ap-
plication domain is the synthetic aperture radar (SAR) technique for remote
sensing of the earth surface [2]. If it is driven in the interferometric mode SAR
can even produce three dimensional maps with a height resolution of some few
meters. However, in order to achieve this high resolution the position of the SAR
sensor and receiver must be known with a high precision. The baseline which is
a vector and reflects the difference in the sensor positions should be precisely
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known, i.e. depending on the geometry of the configuration with an error smaller
than a few millimeters (length) and a few (or even a fraction of an) arcsec (roll
angle). An error of 1 millimeter in this difference results in a meter difference in
the height resolution of the map [3].

This precision can only be achieved by a combination of direct position mea-
surements with flight trajectory computations. Typically GPS signals are used
for navigation. However, it is a well known fact that even the best available GPS-
system (DGPS - Differential GPS) has only a precision of 1-6 meters. But in use
with SAR-satellites this system is not the first choice for reasons that can’t be
discussed in this paper. All other GPS-systems have a precision in a magnitude
of 10 meters. Thus, measurements are taken in regular time intervals in order to
obtain redundant position information. At the same time the flight trajectory
between two measurements is predicted by a mathematical model. The fusion
of both sources of information is done by extended Kalman filter algorithms
with alternating trajectory prediction and position update steps [3]. Clearly, the
better the underlying trajectory model of the Kalman filter is the better will be
the quality of the position estimate. The central question of this contribution is
how precise a near earth satellite orbit can be predicted with state of the art
knowledge about gravitation and air friction.

2 Coordinate Systems

Consulting the literature on the different physical influences on the satellite orbit
(gravitation, atmosphere, air-friction) it turns out that models from different
sources (geodesy, meteorology) are formulated for different reference coordinate
systems. Here the coordinate systems given in Table 1 are relevant. Details about
these coordinate systems and their precise definition can be found in [3].

Table 1. Used Coordinate Systems. Letters x (point of intersection between 0◦ longi-
tude and equator), z (point at the North Pole), y (completion of the Cartesian System)
indicate Cartesian Coordinates. Letters λ (longitude), δ (latitude) and r (distance be-
tween point of origin and emission point) resp. h (height above the earth surface)
signify the coordinates in (modified) Spherical Coordinate Systems.

Name Shortcut Coordinates Characteristics

Inertial System IS xIS, yIS, zIS
stationary
clockwise Cartesian CS

Earth ECS xECS, yECS, zECS
earth-bound

Coordinate System clockwise Cartesian CS

Geocentric earth-bound

Coordinate System GCS λGCS, δGCS, rGCS modified Spherical CS
related to ECS

World earth-bound

Geodetic System WGS λWGS, δWGS, hWGS modified Spherical CS
represents earth-ellipsoid
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Fig. 1. Transformations between the different
used Coordinate Systems.

Explicit formulas are
available to transform each co-
ordinate system into the other.
Figure 1 shows the different
coordinate transformations.
Some of them have well estab-
lished names in the literature.
By applying the chain rule
each coordinate system can be
transformed into each other. All
these coordinate transforma-
tions have been implemented in
MATLAB.

3 Gravitation Model

Several gravitational influences must be taken into account for high precision
flight simulation [4]:

- the gravitational field of the earth,
- the direct gravity influence of the moon, sun and planets, and
- the indirect gravity influence of the tide.

For simplicity the following remarks concentrate on the earth gravitational field
without any time dependent influences on the flight trajectories.

The earth’s gravitational field is described by a potential function U (λ, δ, r)
where λ, δ, r are given in GCS coordinates (see Table 1). As an example the
classical Newton potential is given by U = µ/r with µ - gravitational constant
and r - distance between point of origin and emission point.

The most recent and most detailed gravitational model also takes the vari-
ation of the gravitational potential in dependency of the longitude and latitude
into account. The CHAMP model of the GeoForschungsZentrum Potsdam [5] is
based on high precision measurements with the CHAMP-satellite [6]. Here the
normalized Legendre functions P̄n,m are used for a series development:

U =
∞∑

n=0

µ · an
e

rn+1 ·
n∑

m=0

P̄n,m (sin (δ)) · (cnm · cos (m · λ) + snm · sin (m · λ)) (1)

with µ - gravitational constant, ae - earth semi-major axis, P̄n,m - normalized
Legendre function and cnm, snm - harmonic coefficients, r, λ, δ - see Table 1.
In general the precision of the gravitation model can be increased by adding
further terms to the series development. Currently the parameters are available
up to the 120th degree (e.g. n = 0, 1, ..., 120) [5]. For example there are 6642
coefficients at level 80 and 14762 for degree 120.
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4 Atmosphere Model

Earth atmosphere is subdivided into several layers from which the thermosphere
(90-500 km) and the exosphere (> 500 km) are important in this context. Satel-
lite orbits are influenced by air friction up to a height of about 1000 km. Remote
sensing satellites typically operate in near earth orbit (e.g. ERS in 750 km alti-
tude [4]).

In contrast to gravitation the earth atmosphere is subject to several time
dependent influences like the seasons and the sun activity. Frequently the MSIS
model [7] is used to calculate the atmospheres density. The MSIS model family
is formulated in the WGS coordinate system. The MSIS86 model used here
takes the following parameters into account:

D date STL local apparent solar time
UT universal time F107A 3 month average of F10.7 flux
h altitude above earth surface F107 daily F10.7 flux for prev. day
δ geodetic latitude Ap magnetic index
λ geodetic longitude

This model can be obtained as a FORTRAN source code from [8]. Its details are
much too involved to present them in this paper.

5 Air Friction Model

In addition to the air density the geometry of the satellite determines the total
deceleration due to air friction. In particular the front surface of the satellite
depends on its current orientation relative to the flight trajectory. In the used
model a constant surface is assumed and the total deceleration is assumed to be
proportional to the square of the current velocity which is a common model for
very low gas densities close to molecular flow conditions:

⇀

d = −1
2

· cD · A

m
· ρ · Va · ⇀

V a

with m - mass of satellite, ρ - air density, cD - drag coefficient, A - aerodynamic
active satellite cross sectional area, Va - norm of track speed vector,

⇀

V a - track
speed vector relative to atmosphere.

6 Flight Trajectory Model and Implementation

In total there are three sets of parameters in the present model which influence
the flight trajectory:

- degree and coefficients of the gravitational model,
- coefficients of the air density model, and
- satellite geometry coefficients.
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The dynamics of a satellite can now be described by combining gravitational
and atmospheric influences into Newtons law of motion:

m · ⇀̈
r = Fgrav. + Ffrict. = m · ∇U + m · ⇀

d. (2)

Notice, that the two forces must be given with respect to the same coordinate
system which is chosen here to be the GCS coordinate system. The chain rule
must be applied to compute the gradient ∇U in the GCS system. More details
can be found in [9].

The general model (2) has been implemented in MATLAB. To this end the
coefficients of the gravitation model are imported from a file obtained directly
from the GFZ Potsdam [5]. The MSIS86 model has been converted from the
FORTRAN code to a C code by using the f2c translator and then coupled to
MATLAB via the MEX-interface.

It turned out to be very important to implement the computation of the nor-
malized Legendre function P̄n,m in a numerical stable way. Therefore a recursion
formula [9] should be used instead of the explicit formula, which is subject to
strong numerical errors and also much slower to compute.

Because the resulting ordinary differential equation system (2) has only 6
dimensions and stiffness is not expected the high order explicit integration al-
gorithm DOPRI8 with step size control and dense output [10] has been imple-
mented in MATLAB. It is currently one of the most frequently used high order
Runge-Kutta methods. The average time to simulate one full orbit of a satellite
in 800 km altitude with the CHAMP model of degree 40 was about 30 seconds
on an AMD 1200MHz computer.

7 Numerical Precision

Before the influence of the parameter uncertainties on the prediction of the
flight trajectories can be evaluated it must be known how precise the numerical
solution of the differential equation is. To this end a series of test runs was
undertaken.

A good test case can be produced by omitting the friction force from
equation (2). A first test was the classical Newton model for which exact
solutions are available. If the starting conditions of the system are chosen
appropriately the flight trajectory is known to be an ellipse [1]. Thus the
closing of the trajectory can be checked numerically. The absolute position
deviation in the IS system after one full orbit is less than 2 millimeters in
each coordinate. Also omitting the friction force in the second test case the
system must be conservative with respect to mechanical energy [1]. The test
investigates the change in the computed energies in relation to the energy
at the starting position for simulations with the classical Newton model and
CHAMP model of degree 40 for one full orbit. It turned out that for the classical
Newton model a numerical precision of 10−13 is obtained, whereas for the
most complex model only a numerical precision of at least four digits is achieved.
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Fig. 2. Smoothness of the right hand side of the dif-
ferential equation system. Here the longitude compo-
nent of ∇U (degree 80) for 0◦ latitude is shown.

In order to understand the
obvious difference between
Newton and CHAMP model
a closer look is be taken
to the smoothness of the
right hand side of the differ-
ential equation system (2).
Clearly, the higher the de-
gree of the CHAMP model
is the more high frequent
sine and cosine terms are in-
cluded in (1). This increas-
ingly reduces the smooth-
ness of the model. Figure 2
shows the longitude compo-
nent of ∇U for degree 80 in
the right hand side of the
ODE for 0◦ latitude. In con-
trary to the classical Newton
model the real gravitational

field is not very smooth. Thus algorithms with an excellent behavior for smooth
systems like for example Taylor solvers need not perform well in this case.

8 Sensitivity Analysis

Having an estimate of the numerical precision it is now possible to carry
out parameter variations in order to judge the model prediction uncertainty.

Fig. 3. Absolute deviation in space between two con-
secutive degrees.

To this end a rigorous sen-
sitivity analysis was carried
out for a sample trajectory
with realistic starting condi-
tions of a satellite in an alti-
tude of 800 km. The param-
eters for the atmosphere and
air friction model have been
set to meaningful average
values. Before the parameter
sensitivities are computed it
is tested how large the series
truncation error is, when all
parameters are assumed to
be exact. Figure 3 shows the
absolute deviation in space
between two consecutive de-
grees. A log-linear decrease



234 M. Kalkuhl et al.

can be extrapolated. As a result of this consideration it can be ascertained that
the series truncation error of the gravitation model is in the magnitude of 7
decimeters for degree 40 and 1 millimeter for degree 80.

The quantities for which the sensitivities with respect to a parameter p were
computed were the x, y and z position of the satellite after one full orbit around
the earth. To obtain a more condensed measure the total deviation in space,
that is

S =
√

(∂x/∂p)2 + (∂y/∂p)2 + (∂z/∂p)2

was taken in the following figures. Sensitivities are computed from first order
differential quotients which gives rise to 6642 different simulation runs for a
gravitation model of degree 80.

Absolute sensitivities in general are not very meaningful in a practical ap-
plication context because they have different physical units and thus cannot be
directly compared to each other. In order to obtain comparable sensitivities each
sensitivity is scaled with the precision σp of the respective parameter p:

S̄x = (∂x/∂p) · σp, S̄y = (∂y/∂p) · σp, S̄z = (∂z/∂p) · σp, S̄ = S · σp.

Whereas the precision of the gravitational coefficients can be obtained from the
GFZ institute, the precision of most other coefficients (air density, satellite ge-
ometry) have been roughly estimated. In case of doubt a pessimistic assumption
was made (e.g. up to 30% relative tolerance for some atmosphere parameters).

Fig. 4. Computed weighted sensitivities of the
CHAMP (degree 80), atmosphere and air friction
model parameters after one full orbit. The curve
shows the sensitivity of the CHAMP model param-
eters. The horizontal lines display the different at-
mosphere (solid) and air friction (dashed) parameter
sensitivities.

Figure 4 shows the results
for the CHAMP model (de-
gree 80) in combination with
the atmosphere and air fric-
tion sensitivities. In order to
condense the information all
sensitivities of the parame-
ters in the same polynomial
degree were summarized by
taking a mean value. Inter-
estingly, the more detailed
the gravitational model is
the more imprecise the pre-
diction becomes. This effect
is based on the fact, that
the deviation magnitude σ of
the gravitation parameters
cnm, snm for degrees greater
than 40 becomes equal resp.
larger than the parameter
himself. However, all these
sensitivities are in the same
order of magnitude and up
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to approximately degree 65 are well below the truncation error of the gravi-
tational model. Above this degree the sensitivities exceed the truncation error
which means that the model causes more error with its parameters than the series
truncation. In comparison the sensitivities of the air friction and satellite geom-
etry parameters are also shown in Figure 4. It turns out that these sensitivities
are mostly in the same order of magnitude as the gravitational parameters ex-
cept for the two parameters F107 and F107A which have a significantly higher
influence. Unfortunately, these are exactly those parameters where only little
knowledge is available today.

9 Conclusion

Assuming that the state of the art models for gravitation and air friction are
correct representations of reality and the uncertainties in these parameters are
well estimated the following conclusions can be drawn. According to the three
kinds of error consideration the gravitation model need and should be computed
to a maximal degree of 60 for the requirements of this contribution. A higher
degree will not yield a higher precision. A consequence out of this is, that the
computing time can be reduced compared to a model of higher degrees signifi-
cantly and numerical errors can be avoided. In addition to that the sensitivity
analysis gives also another important result: it’s a prime importance to get the
atmosphere parameters with a very high precision, because they have a great
influence on the whole model.

Future investigation will be made on the consideration of other effects (e.g.
moon or sun gravity) in the flight trajectory model. Also the enhancement of
the model by reproducing the satellites geometry and inertia is intended.
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