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Abstract. Shadow Hybrid Monte Carlo (SHMC) is a new method for
sampling the phase space of large biological molecules. It improves sam-
pling by allowing larger time steps and system sizes in the molecular
dynamics (MD) step of Hybrid Monte Carlo (HMC). This is achieved
by sampling from high order approximations to the modified Hamilto-
nian, which is exactly integrated by a symplectic MD integrator. SHMC
requires extra storage, modest computational overhead, and a reweight-
ing step to obtain averages from the canonical ensemble. Numerical ex-
periments are performed on biological molecules, ranging from a small
peptide with 66 atoms to a large solvated protein with 14281 atoms. Ex-
perimentally, SHMC achieves an order magnitude speedup in sampling
efficiency for medium sized proteins.

1 Introduction

The sampling of the configuration space of complex biological molecules is an
important and formidable problem. One major difficulty is the high dimension-
ality of this space, roughly 3N, with the number of atoms N typically in the
thousands. Other difficulties include the presence of multiple time and length
scales, and the rugged energy hyper-surfaces that make trapping in local minima
common, cf. [1]. This paper introduces Shadow Hybrid Monte Carlo (SHMC),
a propagator through phase space that enhances the scaling of hybrid Monte
Carlo (HMC) with space dimensionality.

The problem of sampling can be thought of as estimating expectation values
for a function A(Γ ) with respect to a probability distribution function (p.d.f.)
ρ(Γ ), where Γ = [xT,pT]T, and xT and pT are the vectors of collective positions
and momenta. For the case of continuous components of Γ ,

〈A(Γ )〉ρ =
∫

A(Γ )ρ(Γ )dΓ . (1)

Examples of observables A are potential energy, pressure, free energy, and dis-
tribution of solvent molecules in vacancies [2,3].

Sampling of configuration space can be done with Markov chain Monte Carlo
methods (MC) or using molecular dynamics (MD). MC methods are rigorous
sampling techniques. However, their application for sampling large biological
molecules is limited because of the difficulty of specifying good moves for dense
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systems [4] and the large cost of computing the long range electrostatic energy,
cf. [3, p. 261]. MD, on the other hand, can be readily applied as long as one
has a “force field” description of all the atoms and interactions among atoms
in a molecule. Additionally, MD enables relatively large steps in phase space
as well as global updates of all the positions and momenta in the system. MD
finds changes over time in conformations of a molecule, where a conformation is
defined to be a semi-stable geometric configuration. Nevertheless, the numerical
implementation of MD introduces a bias due to finite step size in the numerical
integrator of the equations of motion.

MD typically solves Newton’s equations of motion, a Hamiltonian system of
equations,

Γ̇ (t) = JHΓ (Γ (t)), J =
[

0 I
−I 0

]
, (2)

with a Hamiltonian

H(x,p) =
1
2
pTM−1p + U(x) , (3)

where M is a diagonal matrix of masses, U(x) is the potential energy of the
system, and p = M ẋ are the momenta. Eq. (2) can also be written as

ẋ(t) = M−1p(t) , ṗ(t) = F (x(t)) , (4)

where the conservative forces F (x(t)) = −∇U(x(t)).
Numerical integrators for MD generate a solution Γn ≈ Γ (nδt), where the

step size or time step used in the discretization is δt. Typical integrators can be
expressed as

Γn+1 = Ψ(Γn) , (5)

where Ψ represents a propagator through phase space. Any time reversible and
volume preserving integrator can be used for HMC. SHMC requires in addi-
tion that the integrator be symplectic (cf. [5, p. 69]). An integrator is sym-
plectic if ∂Γ Ψ(Γ )TJ∂Γ Ψ(Γ ) ≡ J. In this work, both implementations use the
Verlet/Leapfrog discretization [6], which satisfies the constraints for both prop-
agators.

HMC, introduced in [7], uses MD to generate a global MC move and then
uses the Metropolis criterion to accept or reject the move. HMC rigorously sam-
ples the canonical distribution and eliminates the bias of MD due to finite step
size. Unfortunately, the acceptance rate of HMC decreases exponentially with
increasing system size N or time step δt. This is due to discretization errors
introduced by the numerical integrator and cause an extremely high rejection
rate. The cost of HMC as a function of system size N and time step δt has been
investigated in [8,9]. These errors can be reduced by using higher order integra-
tors for the MD step as in [10]. However, higher order integrators are not an
efficient alternative for MD for two reasons. First, the evaluation of the force is
very expensive, and these integrators typically require more than one force eval-
uation per step. Second, the higher accuracy in the trajectories is not needed in
MD, where statistical errors and errors in the force evaluation are very large.
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2 Shadow HMC

SHMC is a biased variation on HMC. It uses a smooth approximation to the
modified Hamiltonian to sample more efficiently through phase space. The mod-
ified Hamiltonian is exactly conserved by the numerical integrator and a cheap,
arbitrarily accurate, approximation called a shadow Hamiltonian has been pro-
posed in [11]. SHMC samples a non-canonical distribution defined by high order
approximations to the modified Hamiltonian, which greatly increases the accep-
tance rate of the method. A reweighting of the observables is performed in order
to obtain proper canonical averages, thus eliminating the bias introduced by
the shadow Hamiltonian. The overhead introduced by the method is modest in
terms of time, involving only dot products of the history of positions and mo-
menta generated by the integrator. There is moderate extra storage to keep this
history. In this generalization of HMC, sampling is in all of phase space rather
than configuration space alone.

Let ρ̃(x,p) be the target density of SHMC, where

ρ̃(x,p) ∝ exp
(
−βH̃(x,p)

)
, (6)

H̃(x,p) = max
{H(x,p), H[2k](x,p) − c

}
. (7)

Here, H[2k](x,p) is the much smoother shadow Hamiltonian, defined in Section
3, and c is an arbitrary constant that limits the amount by which H[2k] is allowed
to depart from H(x,p).

Algorithm 1 lists the steps for calculating SHMC. The first step is to generate
a set of momenta, p′, usually chosen proportional to a Gaussian distribution. p′

is accepted based on a Metropolis criterion step proportional to the difference
of the total and shadow energies. This step is repeated until a set of momenta
are accepted. Next, the system is integrated using MD and accepted with prob-
ability proportional to Eq. (6). Finally, in order to calculate unbiased values, the
observables are reweighted.

The purpose of the constant c is to minimize the difference in the energies
so that the reweighted observables of H[2k] are unbiased. Let ∆H = H[2k] − H.
Experiments suggest that ∆H is predominantly positive in MD simulations. This
is most likely due to the fact that the shadow Hamiltonian is designed to exactly
conserve energy of the numerical solution of quadratic Hamiltonians such as
those used in MD[11]. Currently, c is chosen proportional to the expected value
of the discretization error, 〈∆H〉. This value is obtained after running a sufficient
number of steps and monitoring ∆H at each step.

3 Shadow Hamiltonian

The modified equations of a system of differential equations are exactly satisfied
by the approximate discrete solution of the numerical integrator used to solve
them. These equations are usually defined as an asymptotic expansion in powers
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Algorithm 1 Shadow Hybrid Monte Carlo (SHMC)
1. MC Step: Given x, generate p′ with p.d.f. ρ̃(x,p), using the acceptance-rejection

method:
a) Generate p′ having p.d.f. ρp(p)
b) Accept with probability

min
{

1,
exp(−β(H[2k](x,p′) − c))

exp(−βH(x,p′))

}

c) Repeat (1a) - (1b) until P is accepted.
2. MD Step: Given Γ :

a) Γ ′ = RΨ(Γ ) (where Ψ nearly conserves H[2k])
b) Accept Γ ′ with probability

min
{

1,
ρ̃(Γ ′)
ρ̃(Γ )

}

c) If rejected, choose Γ.
3. Reweighting Step: Given {A, Γ} , reweight observable A using ρ(Γ )/ρ̃(Γ ) before

computing averages.

of the discretization time step. If the expansion is truncated, there is excellent
agreement between the modified equations and the discrete solution [12].

In the case of a Hamiltonian system, Eq. (2), symplectic integrators conserve
exactly (within roundoff errors) a modified Hamiltonian Hδt. For short MD
simulations (such as in HMC) Hδt stays close to the true Hamiltonian, cf. [5, p.
129–136]. Work by Skeel and Hardy [11] shows how to compute an arbitrarily
accurate approximation to the modified Hamiltonian integrated by symplectic
integrators based on splitting. The idea is to compute

H[2k](x, p) = Hδt(x, p) + O(δt2k) . (8)

H[2k] is the shadow Hamiltonian of order 2k. It follows from centered finite
difference approximations to derivative terms in the expansion of Hδt, and from
interpolation to the evaluation points. It is a combination of trajectory informa-
tion, that is, k copies of available positions and momenta generated by the MD
integration, and an extra degree of freedom β that is propagated along with the
momenta. By construction, H[2k] is exact for quadratic Hamiltonians, which are
very common in MD. Details can be found in the original reference.

A shadow Hamiltonian of order 2k, k even, is constructed as a linear combi-
nation of centered differences of the position and momenta of the system. The
formulae for the 4th and 8th order shadows, k = 2 and k = 4 respectively, follow:

H[4] =
1

2δt

(
A10 − 1

6
A12

)
, (9)
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H[8] =
1

2δt

(
210A10 − 2

7
A12 − 19

210
A14 +

5
42

A30 +
13
105

A32 − 315A34

)
. (10)

Define the ith centered difference formula to be δω[i]. So, for example, δx[2]

would represent the 2nd centered difference of the positions:

δx[2] = xn+1 − 2xn + xn−1

Now define Aij :

Aij =
{

δx[i] · δp[j]M − δx[j] · δp[i]M − δβ[i] : j = 0
δx[i] · δp[j]M − δx[j] · δp[i]M : j �= 0

(11)

Finally, the β term propagated by Leapfrog is:

β = −δt(xn · Fn + 2U(xn)) , (12)

where the forces F, the positions x, and the momenta p, are vectors of length 3N ,
and N is the number of atoms in the system. M is a diagonal matrix containing
the mass of each atom.

4 Numerical Tests

SHMC was tested with a 66 atom Decalanine, and a more complex solvated
protein, BPTI, with 14281 atoms. The methods and example systems are avail-
able by obtaining ProtoMol [13] from our website1. Simulations were run on
a Linux cluster administered by the Department of Computer Science and En-
gineering at the University of Notre Dame. Each node contains 2, 2.4 GHz Xeon
processors and 1 GB RDRAM.

The performance of HMC and SHMC is dependent upon the input parame-
ters of time step δt and trajectory length L. Here, L is amount of simulated time
for one MC step. L should be long enough so that the longest correlation times of
interest are sampled during an MD step, thus avoiding the random walk behav-
ior of MC. SHMC also needs a tuning parameter c to indicate allowed divergence
between the shadow and total energy.

Several techniques have been used to compare SHMC and HMC. The effi-
ciency of sampling is measured by computing the cost to generate a new geomet-
ric conformation. The statistical error is measured by computing the potential
energy and its standard deviation.

Statistical Correctness. In order to test the statistical correctness of the
reweighted values of SHMC, the potential energies (PE) and their standard
deviations were computed. Table 1 shows the average potential energy (PE) for
Decalanine. Looking through the values, there is little difference statistically
speaking. All of the reweighted values are within at least one standard deviation
of the unweighted HMC values. Additionally, the reweighted standard deviation
is acceptable in all cases.
1 http://protomol.sourceforge.net
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Table 1. Average potential energy (kcal/mol) and standard deviation for Decalanine
for HMC and SHMC using an 8th order shadow Hamiltonian.

Time step (fs)
Method 0.5 0.75 1.0 1.25 1.5 2

HMC 97.5 ± 6.5 97.4 ± 6.9 100 ± 6.6 99.8 ± 6.7 98.1 ± 7.1 97.4 ± 9.1
SHMC 103 ± 6.7 102 ± 7 96.8 ± 7.2 98.9 ± 6.8 97.3 ± 8 99.7 ± 8.4

c 0.4 0.4 0.6 1.2 1.2 2.8
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Fig. 1. Average computer time per dis-
covered conformation for 66-atom De-
calanine.
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Fig. 2. Average computer time per dis-
covered conformation for 14281-atom
BPTI.

Sampling Efficiency. The number of molecular conformations visited by HMC
and SHMC is determined using a method suggested in [14]. The sampling effi-
ciency of HMC and SHMC is defined as the computational cost per new confor-
mation. This value is calculated by dividing the running time of the simulation
by the number of conformations discovered. This is a fair metric when comparing
different sampling methods, since it takes care of the overhead of more sophis-
ticated trial moves, and any other effects on the quality (or lack thereof, e.g.,
correlation) of samples produced by different sampling techniques.

Figure 1 shows the number of conformations per second as a function of the
time step for Decalanine. At its best, HMC is only as good as SHMC for one time
step, δt = 1. In terms of efficiency, SHMC shows a greater than two-fold speedup
over HMC when the optimal values for both methods are used. Figure 2 shows
even more dramatic results for BPTI with 14281 atoms. The speedup in this case
is a factor of 10. This is expected, since the speedup increases asymptotically as
O(N1/4)[15].

The following graphs demonstrate how c affects simulations. Figure 3 shows
a plot of the standard deviation of the potential energy as a function of the value
chosen for c. The system is Decalanine, with a time step of 2 fs. Figure 4 shows
that the probability of accepting the MD move also decreases as c increases. In
the first case, a large c is desirable and in the second case a small c is best.
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5 Discussion

SHMC is a rigorous sampling method [15] that samples a p.d.f. induced by
a modified Hamiltonian. Because this modified Hamiltonian is more accurate
than the true Hamiltonian, it is possible to increase the efficiency of sampling.
Since the modified Hamiltonian is by construction close to the true Hamiltonian,
the reweighting does not damage the variance. The additional parameter, c, of
SHMC, measures the amount by which the modified and the true Hamiltonian
can depart. Different regions of phase space may need different optimal parame-
ters. Here, c is chosen to satisfy both bounds on the statistical error of sampling
and an acceptable performance. A rule of thumb is that it should be close to
the difference between the true and the modified Hamiltonian. Other criteria are
possible, and it would be desirable to provide “optimal” choices.

The efficiency of Monte Carlo methods can be improved using other variance
reduction techniques. For example, [16] improves the acceptance rate of HMC by
using “reject” and “accept” windows. It accepts whether to move to the accept
window or to remain in the reject window based on the ratio of the sum of the
probabilities of the states in the accept and the reject windows. SHMC is akin
to importance sampling using the modified Hamiltonian. The method of control
variates [17] could also be used in SHMC.

Conformational dynamics [18,19] is an application that might benefit from
SHMC. It performs many short HMC simulations in order to compute the
stochastic matrix of a Markov Chain. Then it identifies almost invariant sets
of configurations, thereby allowing a reduction of the number of degrees of free-
dom in the system.
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