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Abstract. This paper presents an adaptive modification of the Edge spinning
method for polygonization of implicit surfaces. The method insists on the shape
of triangles and the accuracy of resulting approximation as well. The main
advantages of the triangulation presented are simplicity and the stable features
that can be used for next expanding. The implementation is not complicated and
only the standard data structures are used. The presented algorithm is based on
the surface tracking scheme and it is compared with the other algorithms which
are based on the similar principle, such as the Marching cubes and the
Marching triangles algorithms.

1 Introduction

Implicit surfaces seem to be one of the most appealing concepts for building complex
shapes and surfaces. They have become widely used in several applications in
computer graphics and visualization.

An implicit surface is mathematically defined as a set of points in space x that
satisfy the equation f(x) = 0. Thus, visualizing implicit surfaces typically consists in
finding the zero set of f, which may be performed either by polygonizing the surface
or by direct ray tracing. There are two different definitions of implicit surfaces. The
first one [2], [3] defines an implicit object as f(x) < 0 and the second one, F-rep [8],
[10], [11], [12], defines it as f(x) ≥ 0. In our implementation, we use the F-rep
definition of implicit objects.

Existing polygonization techniques may be classified into three categories. Spatial
sampling techniques that regularly or adaptively sample the space to find the cells that
straddle the implicit surface [2], [4]. Surface tracking approaches (also known as
continuation methods) iteratively create a triangulation from a seed element by
marching along the surface [1], [2], [5], [7], [9], [15]. Surface fitting techniques
progressively adapt and deform an initial mesh to converge to the implicit
surface, [10].
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2 Principle of the Edge Spinning Algorithm

Our algorithm is based on the surface tracking scheme (also known as the
continuation scheme, see Fig. 1) and therefore, there are several limitations. A starting
point must be determined and only one separated implicit surface is polygonized for
such point. Several disjoint surfaces can be polygonized from a starting point for each
of them.

Fig. 1. Continuation scheme, new triangles are directly generated on an implicit surface.

The algorithm uses only the standard data structures used in computer graphics. The
main data structure is an edge that is used as a basic building block for
polygonization. If a triangle’s edge lies on the triangulation border, it is contained in
the active edges list (AEL) and it is called as an active edge. Each point, which is
contained in an active edge, contains two pointers to its left and right active edge (left
and right directions are in active edges’ orientation).

The whole algorithm consists of the following steps (more detailed description in [5]):

1. Initialize the polygonization:
a. Find the starting point p0 and create the first triangle T0.
b. Include the edges (e0,e1,e2,) of the first triangle T0 into the active edges

list.
2. Polygonize the first active edge e from the active edges list.
3. Update the AEL; delete the currently polygonized active edge e and include the

new generated active edge/s at the end of the list.
4. If the active edges list is not empty return to step 2.

3 Edge Spinning

The main goal of this work is a numerical stability of a surface point coordinates’
computation for objects defined by implicit functions. In general, a surface vertex
position is searched in direction of a gradient vector ∇f of an implicit function f, e.g.
as in [7]. In many cases, the computation of gradient of the function f is influenced by
a major error that depends on modeling techniques used [8], [9], [10], [11], [13], [14].
Because of these reasons, in our approach, we have defined these restrictions for
finding a new surface point pnew:



414         M. Cermak and V. Skala

− The new point pnew is sought on a circle; therefore, each new generated triangle
preserves the desired accuracy of polygonization. The circle radius is proportional
to the estimated surface curvature.

− The circle lies in the plane that is defined by the normal vector of triangle Told and
axis o of the current edge e, see Fig. 3; this guarantees that the new generated
triangle is well shaped (isosceles).

3.1 Determination of the Circle Radius

The circle radius is proportional to the estimated surface curvature. The surface
curvature in front of current active edge is determined in according to angle α
between the surface normals n1, n2, see Fig. 2. The normal vector n1 is computed at
point S that lies in the middle of the current active edge e and the vector n2 is taken at
initial point pinit that is a point of intersection of the circle c1 with the plane defined by
the triangle Told.

Fig. 2. The circle radius estimation.

Note that the initial radius r1 of the circle c1 is always the same and it is set at
beginning of polygonization as the lowest desired level of detail (LOD).
The new circle radius r2 is computed as follows.
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where αlim is a limit angle and the constant c represents a speed of “shrinking” of the
radius according to the angle α. To preserve well shaped triangles, we use a constant
kmin that represents a minimal multiplier. In our implementation we used αmin = π/2, kmin

= 0.2 and c = 1.2.
Correction notes:
if (α > αmin) then k = kmin

if (k < kmin) then k = kmin

These parameters affect a shape of triangles of the polygonal mesh generated.
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3.2   Root Finding

If the algorithm knows the circle radius, the process continues as follows.

1. Set the point pnew to its initial position; the initial position is on the triangle’s Told

plane on the other side of the edge e, see Fig. 3. Let the angle of the initial position
be α=0.

Fig. 3. The principle of root finding algorithm.

2. Compute the function values f(pnew) = f(α), 
f(p’new) = f(α + ∆α) – initial position rotated by the angle +∆α, 
f(p”new ) = f(α - ∆α) - initial position rotated by the angle -∆α; Note that the
rotation axis is the edge e.

3. Determine the right direction of rotation; if |f(α + ∆α)| < |f(α)| then +∆α else -∆α.
4. Let the function values f1 = f(α) and f2 = f(α ± ∆α); update the angle α = α ± ∆α.
5. Check which of following case appeared:

a) If (f1⋅f2)<0 then compute the accurate coordinates of the new point pnew by the
binary subdivision between the last two points which correspond to the
function values f1 and f2;

b) If the angle |α| is less than αsafe (see safe angle area in Fig. 2) return to step 4.
c) If the angle |α| is greater than αsafe then there is a possibility that both triangles

Told and Tnew could cross each other; the point pnew is rejected and it is marked as
not found.

4 Experimental Results

The Edge spinning algorithm (ES) is based on the surface tracking scheme and
therefore, we have compared it with other methods based on the same principle – the
Marching triangles algorithm (MTR, introduced in [7]) and the Marching cubes
method (MC, Bloomenthal’s polygonizer, introduced in [2]).
As a testing function, we have chosen the implicit object Genus 3 that is defined as
follows.
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where the parameters are: x = [x,y,z]T, rx=6, ry=3.5, rz=4, r1=1.2, x1=3.9.

The values in Table 1 have been achieved with the desired lowest level of detail
(LOD) equal 0.8. It means that maximal length of triangles’ edges is 0.8. Note that
there is not defined a unit of length, so that number could be for example in
centimeters as well as the parameters of the function Genus 3 described above.

Table 1. Values of the object Genus 3 with the lowest level of detail LOD = 0.8

ES MTR MC
# Triangles 4886 947 1056
# Vertices 2439 473 516
Avg dev. 10,99 56,80 73,28
Angle crit. 0,65 0,67 0,38
Elength crit. 0,77 0,78 0,54

The table contains the number of triangles and vertices generated. The value Avg dev.
means the average deviation of each triangle from the real implicit surface. It is
measured as an algebraic distance of a gravity centre of a triangle from an implicit
surface, i.e. the function value at the centre of gravity of the triangle. Note that the
algebraic distance strongly depends on the concrete implicit function; in our test, the
Genus 3 object is used for all methods, so the value has its usefulness. The value
Angle crit. means the criterion of the ratio of the smallest angle to the largest angle in
a triangle and the value Elength crit. means the criterion of the ratio of the shortest
edge to the longest edge of a triangle. The value Avg dev. shows the accuracy of an
implicit object approximation and the adaptive ES algorithm is logically the best of
tested methods. The criterions of angles and length of edges in triangles are similar
for the ES and the MTR algorithms, so the both approaches generate well-shaped
triangular meshes.

For visual comparison, the resulting pictures of the Genus 3 object generated in the
test are in figures below. Fig. 4a shows the object generated by the adaptive algorithm,
so the number of triangles generated is higher in dependence on the surface curvature.
In Fig. 4b, some parts of the object are lost because the algorithm just connect nearest
parts by large triangles depending of the lowest level of detail. The resulting image
generated by the Marching cubes algorithm is shown in Fig. 4c. This algorithm
produces badly-shaped triangles but it is fast and also stable for complex implicit
surfaces with C0 continuity, only.
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Fig. 4. The Genus 3 object generated by the a) Adaptive Edge spinning algorithm; b) Marching
triangles algorithm; c) Marching cubes algorithm.

Fig. 5 shows the object modeled as intersection of two spheres. The left picture is
polygonized without detection of sharp edges, and the right picture is polygonized
with the edge detection principle applied to the ES method, see [6]. This object
complies only the C0 continuity and it is correctly polygonized by our method.

Fig. 5. Intersection of two spheres generated by the Adaptive Edge spinning algorithm

5 Conclusion

This paper presents the new adaptive approach for polygonization of implicit
surfaces. The algorithm marches over the object’s surface and computes the accurate
coordinates of new points by spinning the edges of already generated triangles.
Coordinates of the new points depend on surface curvature estimation. We used the
estimation by deviation of angles of adjacent points because it is simple and fast for
computation. The similar measurement has been used as curvature estimation in [16]
as well. Our experiments also proved its functionality.

The algorithm can polygonize implicit surfaces which comply C1 continuity, thin
objects and some non-complex objects of C0 continuity (an object should have only
sharp edges, no sharp corners or more complex shapes). In future work, we want to
modify the current algorithm for more complex implicit functions of the C0

continuity, only.
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