Visualization of Very Large Oceanography
Time-Varying Volume Datasets

Sanghun Park!, Chandrajit Bajaj?, and Insung Ihm?

L School of Comp. & Info. Comm. Engineering, Catholic University of Daegu
Gyungbuk 712-702, Korea
mshpark@cu.ac.kr
http://viscg.cu.ac.kr/ mshpark
2 Department of Computer Sciences, University of Texas at Austin
TX 78731, USA
bajaj@cs.utexas.edu
http://www.cs.utexas.edu/"bajaj

Department Computer Science, Sogang University
Seoul 121-742, Korea
ihm@sogang.ac.kr

http://grmanet.sogang.ac.kr/ ihm

Abstract. This paper presents two visualization techniques suitable for huge
oceanography time-varying volume datasets on high-performance graphics work-
stations. We first propose an off-line parallel rendering algorithm that merges
volume ray-casting and on-the-fly isocontouring. This hybrid technique is quite
effective in producing fly-through movies of high resolution. We also describe
an interactive rendering algorithm that exploits multi-piped graphics hardware.
Through this technique, it is possible to achieve interactive-time frame rates for
huge time-varying volume data streams. While both techniques have been origi-
nally developed on an SGI visualization system, they can be also ported to com-
modity PC cluster environments with great ease.

1 Introduction

Understanding the general circulation of oceans in the global climate system is critical to
our ability to diagnose and predict climate changes and their effects. Recently, very high
quality time-varying volume data, made of a sequence of 3D volume data, were generated
in the field of oceanography. The model has a resolution of 1/6 degree (2160 by 960
points) in latitude and longitude and carries information at 30 depth levels. It includes
several scalar and vector field data sets at each time step: temperature, salinity, velocity,
ocean surface height, and ocean depth. The datasets are from a 121 day oceanographic
simulation. The time step interval is 300 seconds beginning on Feb-16-1991 at 12:00:00.
Each scalar value of voxel is stored in four bytes, and the total size of the data is about
134 GB (refer to Table[I).

Usually, oceanographers have used pre-defined color-mapped images to visualize
and analyze changes in an ocean. Because there is a one-to-one correspondence between
colors in color maps and voxel values, these images are quite intuitive. However, they
appear as asimple 2D plane, which leads to difficulties in understanding dynamic changes
between the time steps. On the other hand, images created by 3D rendering techniques,

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 419-E26] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

420 S. Park, C. Bajaj, and I. Ihm

(a) Volume rendering scheme combined (b) Color mapping scheme
with on-the-fly isocontouring

Fig. 1. Comparison of two visualization schemes on T data

such as ray-casting and splatting, may be less intuitive in case illumination models are
applied carelessly. However, 3D-rendered images of high quality have an advantage that
detailed changes between time steps are described effectively. Figure [Tl compares two
visualized images produced using the volume rendering/isocontouring method and the
color-mapping method, respectively, for the temperature data.

In this paper, we discuss two different approaches designed for efficient rendering
of the huge time-varying oceanography datasets on high performance graphics architec-
tures. First, we present our off-line parallel rendering method to produce high-resolution
fly-through videos. In particular, we propose a hybrid scheme that combines both vol-
ume rendering and isocontouring. Through parallel rendering, it effectively produces a
sequence of high quality images according to a storyboard.

Secondly, we explain an interactive multi-piped 4D volume rendering method de-
signed for the same datasets. Although this technique is reliant on the color-mapping
method and does not create 3D rendered images of high quality, it is possible to freely
control camera and rendering parameters, select a specific time step, and choose a color
map in real-time through graphical user interfaces.

Table 1. Statistics on the oceanography datasets used

Name Dataset Attribute Dimension Time Step Size (GB)
T Temperature Scalar 2160 x 960 x 30 121 28.0
S Salinity Scalar 2160 x 960 x 30 115 26.7
Vel Velocity Vector (U, V, W) 2160 x 960 x 30 113 78.6
PS Surface Height Scalar 2160 x 960 114 0.9

2 Offline Parallel Rendering

2.1 Basic Algorithm

Our off-line parallel volume rendering of a data stream was designed to quickly produce
high-resolution fly-through movies using parallel processors. It is based on our parallel

Visualization of Very Large Oceanography Time-Varying Volume Datasets 421

rendering algorithm that tried to achieve high performance by minimizing, through data
compression, communications between processors during rendering [[I]]. The algorithm
was also extended to uncompressed data streams as input data and implemented on a
Cray T3E, SGI Onyx2, and a PC cluster. In our parallel scheme, the image screen is
partitioned into small, regularly spaced pixel tiles, which form a pool of tasks. During
run time, processors are assigned to tiles from the pool of tasks waiting to be executed.
The processors perform a hybrid rendering technique, combining volume rendering and
isocontouring as explained below, repeatedly on tiles until the task pool is emptied. Load
balancing is carried out dynamically during rendering.

2.2 Combining Volume Rendering and Isocontouring

It is very useful to extract isosurfaces at chosen data values to analyze information in
volume data, but isocontouring of large volume data generates a large number of isocon-
tour polygon sets. We designed a new rendering algorithm, merging volume ray-casting
and isocontouring. In this scheme, isocontour extraction during the rendering process
does not require large sets of polygons to be created and stored. When cast rays intersect
volumes and isosurfaces, shading and composing are properly applied on the fly. The
algorithm takes advantage of visualizing interesting materials and isosurfaces simulta-
neously, and using higher order interpolation and approximation. In our implementation,
the ocean floors and continents were rendered by isocontouring at a selected function
value, and the other parts were visualized by volume ray-casting (see Figure[T] (a)).

To create meaningful, high quality 3D images that match pre-defined color maps, we
modified Phong’s illumination model, which determines the final colors from the sum
of three components, ambient color, diffuse, and specular: I = koI, + Y 1) Ij, {ka(N -
L;)+ks(N - H;)™s }. In this basic illumination formula, ambient color &, I, is ignored
and diffuse and specular coefficients k, and ks are substituted for a color k. from a
pre-defined color map according to the data values at the sampling points. The effects
showing 3D appearance and dynamic changes between time steps are demonstrated
well through the calculation of the gradient N used in diffuse and specular terms: I =
E?:l Ilikc{N -Li+ (N . Hi)ns}.

In traditional volume rendering, it is important to use appropriate transfer functions
based on gradient magnitude and functional values, as materials are visualized with
specific ranges. In the visualization of oceanography data, defining the transfer functions
is not a critical issue because all voxels are rendered regardless of their values. We
used uniform transfer functions defined over whole values. To minimize mismatches
between colors in the final images and the pre-defined color maps, caused by improper
composition, our algorithm maintains very dense sampling intervals and uses the ‘over’
operator for color composition.

Figures[T](a) and (b) were created by the proposed rendering method and the color-
mapping method, respectively, where the first time step volume of temperature T data
at a depth of 100 meters was visualized. Although there are some mismatches between
colors of the ocean and the color map in Figure[d] (a), the figure clearly shows dynamic
changes in temperature when a movie for all time steps is played.

2.3 Results of Offline Parallel Rendering

Here, we only present results for uncompressed data to avoid the degradation resulting
from using compressed volume data. The MPI (Message Passing Interface) toolkit was

422 S. Park, C. Bajaj, and I. Ihm

T(1088x480) ——
\ T(2176x960) ---%---
550 S(1088x480) -
3 8(2176x960) &

Rendering Time in Seconds
8
8

. ol . i
1 4 8 12 16 20 24 1 4 8 12 16 20 24
Number of Processors Number of Processors

(a) Speedup (b) Rendering time

Fig. 2. Results on speedup and rendering time

used as an interprocessor communication library, and timings were taken in seconds
for generating 2176 x 960 and 1088 x 480 perspective images using 32 x 32 tiles on
a SGI Onyx2 with 24 processors and 25 GB of main memory. Figure 2| shows the
performances of the average speedup and rendering times on T and S data for one
time step. The data loading times from secondary disks to main memory were not
considered in these results. When 24 processors were used, it took 3.19 seconds to
render a 1088 x 480 image and 6.42 seconds to render a 2160 x 960 image, both of
S data. On the other hand, it took 65.33 and 260.96 seconds to generate the same
images on a uniprocessor. The primary reason for the increased speed is that our scheme
minimizes the data communication overhead during rendering. Only communication for
task assignments and image segment collection is necessary.

3 Interactive Multi-pipe 4D Rendering

3.1 Implementation Details

We have also developed an effective multi-pipe rendering scheme for the visualization of
time-varying oceanography data on the SGI Onyx2 system that has six InfiniteReality2
graphics pipes with multiple 64MB RM9 Raster Managers. The graphics system can be
tasked to focus all pipelines on a single rendering window, resulting in near-perfect linear
scalability of visualization performance [2]. It is optimized for rendering polygon-based
geometric models, not for visualizing volume data. Most large volume datasets contain
much more voxels than can be stored in texture mapping hardware. To take advantage
of graphics hardware acceleration, volume datasets are partitioned into sub-volumes
called bricks. A brick is a subset of voxels that can fit into a machine’s texture mapping
hardware. In general, the optimal size of bricks is determined by various factors such as
texture memory size, system bandwidth, and volume data resolution. In our application,
the size of the bricks is dynamically determined to minimize texture loading.
Texture-based volume rendering includes a setup phase and a rendering phase (see
Figure [3 (a)). The setup phase consists of volume loading and data bricking whose
computational costs depend on disk and memory bandwidth. This process does not

Visualization of Very Large Oceanography Time-Varying Volume Datasets 423

Master pipe (PO } Polygonization process

Load a set of volume data while (1) {

Partition off volume to make a set of bricks | | Polygonize current set of bricks
Set of bricks in while (1) { Signal to finish polygonization
- N Set a current view }
shared memory space N
- Set a rendering order of bricks /
- Set a lookup table Slave pipes (P1,P2 . P3 . P4 PS5}

Set of volume]
data in hard
disk storage

Wait until polygonization is done

Signal (o start rendering while (1) {
—

Birck Set clipping planes Set current viewing

distribution Render assigned bricks [Wait for rendering start signal

o each pipe glReadPixels () Set clipping planes
— ” ‘Wait until all pipes finish rendering | Render assigned bricks
| for (each pipe) glReadPixels ()
glDrawPixels () Signal to finish rendering
—] Signal to restart rendering —— > Wait until image composition is done
T gIXSwapbuffer () gIXSwapbuffers ()
comp } }

(a) Rendering architecture (b) Applied algorithm

Fig. 3. Our multi-pipe visualization scheme

affect the actual frame rates in run-time rendering because the entire voxels of each test
set are loaded into shared memory.

The rendering phase involves texture loading from shared memory space to tex-
ture memory, 3D texture mapping in Geometry Engines and Raster Managers, and
image composition. It is important to optimize each step in the rendering phase to
achieve interactive-time frame rates. Because the maximum texture download rate is
330 MB/second from host memory, it takes at least 0.19 seconds (%) to load one 64
MB brick. Despite the ability that downloads and draws textures simultaneously, allow-
ing textures to be updated on the fly, the cost is so expensive that real-time frame rates are
hard to achieve. When volume datasets, much larger than the amount of texture memory
on the graphics platform, are visualized, the inevitable texture swapping hinders real-
time rendering [5], hence should be minimized. Actually, without texture swapping, it
was possible to create over 30 frames per second using the Onyx2. Multiple graphics
pipes are involved in our scheme. As each pipe loads different bricks, the amount of
texture swapping can be minimized.

As mentioned, partitioning large volume data into bricks in hardware accelerated
rendering is necessary. It is important to assign them to the respective pipes carefully be-
cause the number of Raster Managers of our system varies pipe-by-pipe (see Figure[3 (a)
again). It takes 0.08 seconds (12.24 frames per second) to render a volume dataset of 64
MB using a pipe in { Py, P, P, } with four Raster Managers. On the contrary, if a pipe
in { Py, P3, Ps} with two Raster Managers is used to render the same data, the rendering
time is almost doubled (0.15 seconds: 6.81 frames per second). We were able to improve
the speedup by assigning additional bricks to pipes with more Raster Managers.

Figure[3(b) gives an overview of our algorithm based upon the object-space division
method to minimize texture swapping. The master pipe { Py} plays an important role in
controlling the slave pipes { Py, P, P5, Py, P5} and composing sub-images. The slave
pipes render assigned bricks and write sub-images to shared memory space under the
control of the master pipe. The polygonization process as a separate thread process
continues to generate sequences of polygons perpendicular to the viewing direction
until the program is finished.

Once the current view is set, a rendering order of bricks is determined. Each pipe starts
creating sub-images for the assigned bricks and then the master pipe composes the sub-

424 S. Park, C. Bajaj, and I. Ihm

(a) Hybrid method (b) Color mapping method

Fig. 4. Visualization results on T data

Fig. 5. Images of T data created by combining volume rendering and isocontouring

Fig. 6. Interactive multi-pipe time-varying volume visualization of T data

Visualization of Very Large Oceanography Time-Varying Volume Datasets 425

(c) Hly-through under the ocean (d) Spheres for showing Vel data

Fig.7. A fly-through using the SGI Performer

images according to the order. Our algorithm requires synchronization for every frame
between the master pipe and the slave pipes. Because the master pipe must wait until
all slave pipes have written sub-images in shared memory space, the actual frame rate is
dictated by the slowest pipe. We tried to solve this problem by proportionally assigning
bricks. It is inevitable that the rendering of time-varying data requires additional texture
swapping. To reduce the swapping cost, the algorithm routinely checks to make sure that
the next brick to be rendered is already stored in texture memory.

3.2 Performance of Multi-pipe Rendering

We have used the OpenGL and OpenGL Volumizer [4]] to measure the timing performance
in rendering images of size 640 x 640. As hardware-supported texture memory requires
the dimensions of the bricks to be a power of two, each original time step of volume
data was reduced to 2048 x 1024 x 32 volume with 1-byte voxels for this experiment.
The best rendering speed was achieved when three pipes { Py, P2, Py} were used. The
oceanography data was rendered at an interactive frame rate of 12.3 frames per second
with varying time steps.

4 Experimental Results and Concluding Remarks

When two videos, one created by our rendering scheme and the other by the color
mapping method, were displayed at the same time in a single window, we found that
it enables an oceanographer to easily analyze the information contained in the time-
varying volume data. In Figure B interesting local regions are visualized to see the
difference of the two rendering methods. The oblique images clearly show that our
hybrid technique represents ocean changes better than the color mapping method does.

426 S. Park, C. Bajaj, and I. Ihm

Figure[§ demonstrates animation frames taken from high density movies made by our
off-line parallel scheme.

The images of Figure [6] are snapshots created by our multi-pipe technique at an
interactive frame rate. As it creates images by rendering a sequence of resampling planes
intersected with bricks, the volume data is also considered a geometric object. Therefore,
it is easy to visualize volume data and other geometric objects simultaneously. It is also
trivial to dynamically set cutting planes that allow us to investigate the inside of an
opaque volume. Our multi-pipe rendering scheme can be easily transformed as a core
rendering module for stereoscopic multi-screen display systems.

Time-varying oceanography data could be visualized using the OpenGL Per-
former [3]. Because the OpenGL Performer uses only polygonal models as input data
and exploits optimized multi-pipe rendering, we had to extract geometric information
from the time-varying volume dataset in a pre-processing stage. In Figure[7] the dynamic
ocean surface polygons and the colors of the polygon vertices defined as functional val-
ues were generated from the PS data and the T data, respectively. The mesh dataset
for the ocean floor was created by a simple polygonization algorithm. To visualize the
velocity vector field, we made spheres from Vel. The radius of the spheres represents the
magnitude of velocity at the sampling point, and the line segments attached to the spheres
indicate the direction. During a fly-through at an interactive frame rate, we were able
to effectively investigate the relationship between datasets in the dynamically changing
ocean field.

In this paper, we have presented two visualization techniques to render huge time-
varying oceanography data. We focused not only on creating high quality images using
an off-line parallel rendering algorithm, but also on an interactive rendering algorithm
that takes advantage of the multi-pipe feature of an SGI’s high performance graphics
system. Currently, our visualization techniques are planned to be ported to commodity
PC cluster environments.

Acknowledgements. We wish to thank Prof. Detlef Stammer and Dr. Arne Biastoch of
Scripps Institution of Oceanography for allowing access to the oceanography data. This
work was supported by Korea Research Foundation Grant (KRF-2003-003-D00387).

References

1. C. Bajaj, I. Ihm, G. Koo, and S. Park. Parallel ray casting of visible human on distributed
memory architectures. In Proceedings of VisSym 99 (Joint EUROGRAPHICS-IEEE TCVG
Symposium on Visualization), pages 269-276, Vienna, Austria, May 1999.

2. G. Eckel. Onyx2 Reality, Onyx2 InfiniteReality and Onyx2 InfiniteReality2 technical report.
Technical report, Silicon Graphics, Inc., 1998.

3. G. Eckel and K. Jones. OpenGL Performer programmer’s guide. Technical report, Silicon
Graphics, Inc., 2000.

4. Silicon Graphics Inc. OpenGL Volumizer programmer’s guide. Technical report, Silicon
Graphics, Inc., 1998.

5. W. R. Volz. Gigabyte volume viewing using split software/hardware interpolation. In Pro-
ceedings of Volume Visualization and Graphics Symposium 2000, pages 15-22, 2000.

	Introduction
	Offline Parallel Rendering
	Basic Algorithm
	Combining Volume Rendering and Isocontouring
	Results of Offline Parallel Rendering

	Interactive Multi-pipe 4D Rendering
	Implementation Details
	Performance of Multi-pipe Rendering

	Experimental Results and Concluding Remarks

