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Abstract. Rational functions are often used to model and to interpo-
late frequency-domain data. The data samples, required to obtain an
accurate model, can be computationally expensive to simulate. Using
the frequency derivatives of the data significantly reduces the number of
support samples, since they provide additional information during the
modeling process. They are particularly useful when the data is sparse
and the samples are selected adaptively.

1 Introduction

The simulation of complex structures can be computationally very expensive
and resource-demanding. One often wants to minimize the number of costly
data samples, in order to obtain an accurate model in an acceptable amount of
time [1]. The computational cost of higher-order derivatives is sometimes only
a fraction of the cost of simulating additional samples. Some Finite Element
Method (FEM) simulators, such as the High Frequency Structure Simulator
(HFSS) [2] can take advantage of this property.

The Model Based Parameter Estimation (MBPE) [3][4] is an efficient tech-
nique to model Linear Time Invariant systems (LTI) in the frequency domain
using a rational pole-zero function. By expanding the numerator and denomina-
tor in a Forsythe polynomial basis [5], some numerical instabilities are improved,
since this makes the normal equations best conditioned [6]. Furthermore, by us-
ing multiple spline interpolation with adaptive knot placement [7], the numerical
stability issues of highly complex multi-pole systems can be circumvented.

In this paper, we extend MBPE so that the frequency derivatives of the data
can be taken into account.

2 Model Based Parameter Estimation

2.1 Rational Model

Using the Model Based Parameter Estimation (MBPE) technique, the frequency
domain data can be modeled by a rational transfer function :

H(fs) =
∑N

n=0 Nn.(j2πfs)n

∑D
d=0 Dd.(j2πfs)d

(1)
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or equivalently :
(

D∑

d=0

Dd.(j2πfs)d

)

.H(fs) =
N∑

n=0

Nn.(j2πfs)n (2)

where the H(fs) represent the data samples simulated at the discrete frequency
fs, ∀s = 0, ..., S. N and D are the order of numerator and denominator respec-
tively. Coefficient D0 can be set to 1 without loss of generality, since it is always
possible to convert to this form by dividing numerator and denominator by D0.

The calculation of numerator and denominator coefficients in this polyno-
mial basis (the power series) leads to an ill-conditioned Vandermonde system.
For highly dynamic systems, severe numerical problems will make the results
inaccurate and completely useless. Therefore, the numerator and denominator
of the rational function will be decomposed in a separate basis of Forsythe poly-
nomials. This approach guarantees that the set of normal equations are best
conditioned [8].

2.2 Forsythe Polynomials

The Forsythe polynomials are derived from the following three-term recurrence
relation :

p−1(f) = 0
P0(f) = 1 (3)
P1(f) = j2πf.p0(f)

...

Pi(f) = j2πf.pi−1(f) + βi−1.pi−2(f)

The coefficients β are calculated by summation over all negative and positive
sample frequencies

βi =

√
√
√
√

S∑

s=0

[Pi(fs)][Pi(fs)]∗ (4)

which leads to the following orthonormal Forsythe polynomials

pi(f) =
Pi(f)

βi
(5)

The polynomials are orthonormal over the discrete sample set fs, such that
S∑

s=0

[pm(fs)].[pn(fs)]∗ = δmn ∀0 ≤ m, n < S (6)

After performing the basis transformation, the coefficients of numerator and
denominator can be calculated by solving the following set of equations for all
frequencies fs with a Singular Value Decomposition (SVD) :

Asx = bs (7)

where



Adaptive Model Based Parameter Estimation, Based on Sparse Data 445

As =
[�[−p0(fs)] ... �[−pN (fs)] �[p1(fs)H(fs)] ... �[pD(fs)H(fs)]

�[−p0(fs)] ... �[−pN (fs)] �[p1(fs)H(fs)] ... �[pD(fs)H(fs)]

]

(8)

x =
[
N0 ... NN D1 ... Dd

]T (9)

bs =
[�[−p0(fs)H(fs)]

�[−p0(fs)H(fs)]

]

(10)

Note that the system can be overdetermined, such that the number of rows
in matrix A exceeds the number of columns (or the number of unknown coeffi-
cients).

3 Derivatives

Now assume that frequency derivatives of the data are available at the discrete
frequencies fs.

If p
(t)
i (fs) represents the tth derivative of the ith Forsythe polynomial, eval-

uated in frequency fs, it can be expressed as :

p
(t)
i (fs) =

t.p
(t−1)
i−1 (fs) + j2πf.pt

i−1(fs) + βi−1.p
(t)
i−2(fs)

βi
(11)

To avoid a breakdown of the orthogonality, virtual samples are introduced
when frequency derivatives are used.

Equation (2) can be generalized by taking the frequency derivatives into
account. The coefficients Nn and Dn of the rational fitting model now satisfy :

H(t)(fs).
D∑

d=0

Dd.p
(0)
d (fs) =

N∑

n=t

Nn.p(t)
n (fs) (12)

−
t∑

k=1

D∑

d=k

Dd.p
(k)
d (fs).H(t−k)(fs).

t!
k!(t − k)!

where p
(t)
n is the tth order derivative of the nth order numerator Forsythe poly-

nomial, p
(t)
d is the tth order derivative of the dth order denominator Forsythe

polynomial, and H(t) is the tth order derivative of the frequency domain data.
All derivatives are relative to j2πf . The set of equations at all frequencies f and
for all derivatives t, can be written in a matrix form, similar to equation (7).

In some cases, the magnitude of the derivatives can be extremely small or
large. Calculating the coefficients using all the information can make the cor-
responding least-squares system ill-conditioned. Therefore it is recommended to
check the magnitude of the derivatives before they are used. A trade-off needs
to be made between the loss of information and the loss of numerical stability.
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Get initial samples 
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Fig. 1. Flowchart of the FFS algorithm

4 Fast Frequency Sweep

To minimize the cost of simulating computationally expensive data samples, an
adaptive algorithm is used that automatically selects a minimal sample distri-
bution and model complexity [1].

The flow chart of the algorithm is shown in Figure 1. It consists of an adaptive
modeling loop, and an adaptive sample selection loop.

The algorithm starts with 4 samples equidistantly spaced over a certain fre-
quency range of interest. Depending on the number of available data samples,
multiple rational models are built with different order of numerator and denom-
inator, exploiting all degrees of freedom.

The rational fitting models are evaluated in the data points, and compared
against one another. If the error between the rational model (and its derivatives)
evaluated in the selected sample points and the simulated data samples (and its
derivatives), exceeds a certain threshold, the model is rejected, and the model’s
complexity is increased. All models with different order of numerator and de-
nominator are ranked, and the 2 best models (i.e. with lowest overall error) are
retained.

The difference between the two models is called the estimated fitting error,
and new samples should be chosen in such way, that the maximum estimated
fitting error is minimized. A reliable way to estimate the fitting error, and select
new samples is given in [1]. Optionally, the algorithm can be extended with an
adaptive spline selection loop, as introduced in [7].

5 Example: Ring Resonator

The new proposed technique is used to model the reflection coefficients S11 of
a microwave RingResonator over the frequency range [1 GHz - 1.2 GHz]. The
desired accuracy level is -60 dB, which corresponds to 3 significant digits. A
highly accurate full-wave electro-magnetic simulator Momentum [9] is used to
simulate the sparse data samples.
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Fig 2a.
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Fig 2b.
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Fig 2c.
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Fig 2d.
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Fig 2e.

Fig. 2. Multiple steps of adaptive modeling process of a RingResonator, based on a
sparse set of data samples (no frequency derivatives). The desired reference model is
represented by a solid line. The selected samples are marked with a cross, and the ”best”
intermediate model is plotted as a dashed line. The real modeling error is plotted as a
dash-dotted line (right axis).

In Figure 2a-e, the component is modeled using the default MBPE, i.e. with-
out making use of frequency derivatives. The algorithm initially starts with 4
samples, equidistantly spaced over the frequency range of interest, and builds
several interpolation models. The ”best” model is shown as a dashed line. In
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Fig 3a.
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Fig 3b.

Fig. 3. Multiple steps of adaptive modeling process of a RingResonator, based on a
sparse set of data samples + first frequency derivatives. The desired reference model
is represented by a solid line. The selected samples are marked with a cross, and the
”best” intermediate model is plotted as a dashed line. The real modeling error is plotted
as a dash-dotted line (right axis).
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Fig. 4. Multiple steps of adaptive modeling process of a RingResonator, based on
a sparse set of data samples + first and second frequency derivatives. The desired
reference model is represented by a solid line. The selected samples are marked with a
cross, and the ”best” intermediate model is plotted as a dashed line. The real modeling
error is plotted as a dash-dotted line (right axis).

each iteration of the algorithm, new samples are selected where the estimated
error (the difference between 2 rational approximants, based on the same set
of support samples) is maximal. Based on the extra data points, new rational
models are built and evaluated, and the estimated error function is updated.
The iterative process is repeated until the error is below a predefined accuracy
threshold. In this example, 8 support samples are automatically selected, to
obtain the required precision.

In Figure 3a-b, the first frequency derivatives are also used in the modeling
process. This additional information is exploited by the algorithm, and now it
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only needs 5 samples to find an accurate model. In this example, the extra sample
was chosen very efficiently in the dip of the resonance.

In Figure 4, the second frequency derivatives are also used in the modeling
process. The initial set of equally distributed samples already guarantee sufficient
accuracy.

Of course, it can be useful to take also higher-order derivatives into account,
especially if the behaviour of the system is highly dynamic. Typically, if more
derivatives are used, fewer samples will be needed to get an accurate model.
However, the value of the higher order derivatives in determining the model
parameters is usually less than the value of lower order derivatives or samples,
partially due to numerical issues.

6 Conclusion

In this paper, we extend the MBPE technique with frequency derivatives. During
the adaptive modeling process, this reduces the number of required support
samples significantly. This approach is particularly useful if the computational
cost of simulating the required support samples is very high, and when the
samples are selected adaptively. And so, an accurate model can be obtained,
using a minimal set of data samples and their frequency derivatives. The stability
of the algorithm is improved by a transformation of the rational model into a
generalized Forsythe orthonormal basis, which makes the normal equations of
the least squares system best conditioned.
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