
The Proof and Illustration of the Central Limit
Theorem by Brownian Numerical Experiments

in Real Time within the Java Applet

Monika Gall, Ryszard Kutner, and Wojciech Wesela

Institute of Experimental Physics, Department of Physics, Warsaw University,
Smyczkowa 5/7, PL-02678 Warsaw, Poland

Abstract. We developed the interactive Java applet1 which made it
possible to prove and illustrate by Brownian numerical experiments the
Central Limit Theorem (CLT); the theorem which yet constitutes the
basis for the Gaussian stochastic processes and the reference case for
the non-Gaussian ones. Our approach emphasizes the contrast between
theoretical complexity and simplicity provided by our probabilistic sim-
ulations. We argue that the present approach should be the preliminary
stage for the advanced educational process before the analytical stage is
developed. We stress that the Gaussian probability distribution function
(PDF) is a stable as distinguished, e.g., from the delta-Dirac, Poisson
and t-Student ones which were also considered for comparison. The lat-
ter distribution was chosen so as to have all the moments higher than
the second order diverging so as to verify the validity of CLT. As our
experiments were performed in real time we were able to visualize the
convergence of the processes (versus the size of the statistical ensemble of
Brownian experiments) both to the variance of the sum of independent
identically distributed random variables (which linearly increases with
the number of the latter) and to the Gaussian PDF (which is the asymp-
totic distribution of this sum independently of the single-step PDF used
here). We hope that our experimental approach will inspire students to
undertake their own studies, e.g., to consider the non-Gaussian processes
where CLT is violated which is the modern trend in statistical physics
and its applications.

1 Motivation

It is commonly known that the limit theorems constitute one of the main trends
in the theory of stochastic processes and their applications. Among them the
Central Limit Theorem (CLT) plays a crucial role in broad applications cover-
ing many fields ranging from statistical physics across stochastic simulations to
signal processing [1].

1 This applet is available under the internet address: http://primus.okwf.fuw.edu.pl
/erka/DIDACT/CTG BROWN/ .
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Roughly speaking, the CLT is one of the main statistical properties respon-
sible for the main question, namely: what is the probability distribution func-
tion (PDF) of the sum of an unlimited number of (independent identically dis-
tributed) random variables? This problem was intensively and extensively stud-
ied in the last century by a huge number of researchers; these studies provided
many handbooks, monographs, review papers and scientific works in mathemat-
ics and in natural, social and economical sciences. However, it is really surprising
that up to now no Java applets were published as a modern educational tool
directly verifying CLT and supporting, e.g., the distant learning of the above
mentioned sciences.

In this paper we study the (unbiased) Brownian motion or random walk
(hence, throughout this article we shall use the physical notation where ran-
dom variables can be treated as displacements or increments of the Brownian
particle). By using our Brownian numerical experiments we verify (with good
approximation) the weakest version of CLT which should be adventageous both
for the random walk theories and for various applications of CLT [2].

2 CLT and Possibilities of the Advanced Java Applet

There are many mathematical formulations of various versions (weaker or
stronger) of the Central Limit Theorem. In the present work we consider the
one, often used in natural, social and economical sciences.

General description. The user of the applet can choose a concrete distribution
of single displacements of the walker from among the typical ones: (i) the delta-
Dirac, (ii) the Gaussian, (iii) the Poisson and (iv) the Student’s distribution
offerred by the option Distribution of single diplacements (see e.g., Fig.1).

The Student’s PDF was defined by three degrees of freedom so as to have all
moments higher than the second order diverging (opposite to the first three dis-
tributions having all moments finite). The latter case is particularly interesting
as the speed of convergence to the limit Gaussian distribution cannot be covered
in this case neither by the well-known Chebyshev-Gnedenko-Kolmogorov expan-
sion nor by the Berry-Esséen theorems 1 and 2 [3,4]. Thus the decisive role of
the finite variance is emphasized and the validity of CLT is verified. Other PDFs
(for example, so popular as the uniform, log-normal, and Gamma ones) can be
also attached to the applet by the user himself as the Java is an object, platform
independent programming and the source code of our applet is available (our
applet is working under the Java 2 version 1.4.1.1 or higher).

The fundamental step of each experiment is to draw the length of a
single, independent displacement of the walker from the chosen PDF common
for all steps and all experiments. This is the initial assumption of the CLT.
For example, in this work we present the results for Gauss and Poisson PDFs.
Since in all our cases time is homogeneous, the most general version of the CLT,
which assumes various distributions for different steps of the walker, cannot be
considered here.
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The asimuth of the displacement is always drawn from the uniform
probability distribution function as we consider unbiased (isotropic) random
walks (i.e. the unbiased version of the CLT). Hence, as the number of steps n is
again introduced by the user (by applying the option Number of particle steps,
see e.g., Fig.1), the characteristic zig-zag trajectory can be designed in each
experiment together with the total displacement R(n), marked by the interval
which connects the beginning (empty circle) and the end (full circle) of the
trajectory.

In this way we illustrate the Brownian motion i.e. an incessant and
irregular motion of the particle immersed in an ambient medium (which is in-
visible here), e.g. suspended in a fluid. Each single step of the Brownian particle
(defined by consequent turning points) is characterized by the abruptness, hence
the velocity of the particle is a quantity practicaly unmeasurable so a less defi-
nite description was used. The key point of the theory of Brownian motion was
given by Smoluchowski who found that sufficiently large fluctuations, although
relatively rare, are still common enough to explain the phenomenon [2].

Detailed description. The total displacement R(n) is composed of n single,
elementary displacements (increments) rj , j = 1 . . . , n,

R(n) =
n∑

j=1

rj ; (1)

of course, the CLT involves a fundamental constraint

σ2 = 〈(rj)2〉pdf = 〈r2〉pdf < ∞, j = 1, 2, 3, . . . , (2)

obeyed for any step j and for each distribution mentioned above (here 〈. . .〉pdf

means the average over the single-step PDF).
The basic, global aim of the applet is to construct a statistical ensem-

ble (series) of the mentioned above independent experiments within which the
particle performs a two-dimensional random walk. For example, in the frame of
the left window in all the enclosed figures the zig-zag trajectories of the walker
are shown. Note that by using the zoom, the trajectory can be enlarged 2 or 4
times to allow observation of its structure (e.g., some elements of self-similarity
in the stochastic sense). The number of such experiments as well as the number
of particle steps common for all experiments is declared by the user at the be-
ginnig. Usually, the applet is able to conclude series of experiments (consisting
of hundred thousands) sufficient for a good statistics within a few minutes while
their visualization is performed (during the simulation) as often as it is set by
the user (by using the option Snapshot picture after each ... experiments, cf.
Fig.1). Moreover, the option Delay (again see Fig.1) makes it possible to execute
a single experiment sufficiently slowly to observe, e.g., elementary displacements
of the Brownian particle. By setting this statistical ensemble of experiments the
required averages (just over the statistical ensemble) and required statistics can
be easily constructed (cf. the final stages presented in Figs.1 - 3).

In fact, the applet calculates two time-dependent quantities: (i) the mean-
square displacement (MSD) of the walker 〈[R(t)]2〉se (here 〈. . .〉se is the L-
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Fig. 1. Snapshot of the screen’s picture of a single experiment of the Brownian motion
together with the MSD vs. time of the Brownian particle almost for the final stage
(after 667000 experiments).

dependent average over the statistical ensemble where L is the size of this en-
semble, cf. Sec.3) and (ii) the statistics (in the form of the histogram) G(R; t) of
the total displacement passed within time t2. These two quantities are the main
ones considered by the CLT.

The right window of the applet is working in real time in two modes, which
are selected by the user: the first, which visualizes the preparation of the MSD
vs. time t and the second one, which analogously shows the statistics at time
t which is (almost) smoothly fixed by using the applet’s slider. In both cases
the applet shows the movie, which is the more stable the greater is the size of
the statistical ensemble (L); this is a reminiscence of the Law of Large Numbers
(LLN) [5].

2 Here time t = τn, where τ is the time needed by the walker to perform a single step,
common for all steps (in each experiment we put τ = 1); this defines, the so called
’discrete-time’ random walks.



The Proof and Illustration of the Central Limit Theorem 471

Fig. 2. Snapshot of screen’s picture of a single experiment of the Brownian motion
together with the statistics G(R, t) of the Brownian particle displacements for long
time (t = 35) almost the final stage (after 667000 experiments).

By using our applet we exploit conditions sufficient for the Central Limit
Theorem to occur.

3 The Algorithm and Results

The applet constructs a statistical ensemble of independent (similar) experiments
within which the walker performs two-dimensional random walks; all necessary
details of these walks are recorded.

Preparation of the MSD. By using the statistical ensemble, the mean-square
displacement is easily calculated

〈[R(m)]2〉se =
1
L

L∑

l=1

[Rl(m)]2, m = 1, 2, 3, . . . , n, (3)

where m is the current number of the walker steps common for all experiments,
which increases up to its maximal value n set before the applet starts, and



472 M. Gall, R. Kutner, and W. Wesela

analogously L is the current number of experiments which increases up to its
maximal value set by the user at the beginning. The MSD is currently presented
in the right window of the applet within the MSD mode. As the parameters L
and m increase up to their maximal values we can observe convergence of the
MSD to its stable limit which is just a reminiscence of the LLN.

Preparation of statistics. As the real space is isotropic we can use the followin
formula to simplify the relation which constitutes the basis for the histogram and
to remarkably improve the statistics

L(R, R + ∆R; t)
L

=
∫ 2π

0
dφ

∫ R+∆R

R

dR′R′ · PDF (R′; t)

≈ 2π∆R · (R +
∆R

2
) · PDF (Rξ; t), (4)

where quantity L(R, R+∆R; t) is the number of experiments (from the statistical
ensemble) in which we found the particle within the ring of inner radius R and
thickness ∆R after t steps. Hence, L(R, R + ∆R; t)/L estimates the (related)
probability of finding the walker within the ring of inner radius R and thickness
∆R at time t; here R =| R | is the length of the position vector R and the
thickness ∆R � σ. The radius Rξ obeys inequalities R ≤ Rξ ≤ R + ∆R and
was chosen so as the experimental statistics fulfilled the normalization condition.
It is seen from relation (4) that we calculate the searched one-sided probability
distribution function, PDF (R(≈ Rξ); t), as a function of R(≥ 0) for various
times t; this is visualized in the right window by using the applet slider given by
option Time t.

Results. The final (in practice) situation after 667000 experiments (for the
Poisson PDF of single-step increments) is shown in Figs.1 and 2. In these figures
the final stage of convergence is observed; a good agreement between experimen-
tal results and theoretical predictions is well seen, which proves experimentally
the Central Limit Theorem. The discrepancy can be observed only for the short
time range (t ≈ 10). Althoug the data shown in these figures concern the Poisson
PDF for a single walker step, the results for other PDFs are very similar; they
differ only by the speed of convergence to the asymptotic MSD and the Gaus-
sian PDF. As for the Gaussian PDF of single-step increments the convergence is
quickest (cf. Fig.3 where time t = 5 was sufficient) a comment should be made.

There is a characteristic difference between the Gaussian and other PDFs,
namely, the Gaussian one is a stable distribution in the sense that PDF of R(n)
is again a Gaussian probability distribution function for any n ≥ 1. This effect
can be observed by using the applet where the results (for the Gaussian PDF of
single-step increments) can be shown, for example, for n = 5, 10 and 40.

For any case, the final stage of statistics requires a much larger size of the
statistical ensemble than that required by the time-dependent mean-square dis-
placement; this can be easily observed within the applet where after about
L ≈ 10000 the MSD vs. time well agrees with the theoretical prediction but
not the statistics which still exhibits too large scattering of the data points.
However, the speed of convergence to the Gaussian PDF for increasing L is the
greatest for the case of the Gaussian PDF of single-step increments.
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Fig. 3. Snapshot of the screen’s picture of a single experiment of the Brownian motion
together with the statistics G(R, t = 5) of the Brownian particle displacements for the
final stage (after 82500 experiments).

4 Concluding Remarks

It is remarkable that so rich numerical results were obtained by using a so simple
probabilistic algorithm [6]. Our algorithm obeys two constraints fundamental for
our considerations. The first one

lim
n→∞

n∑

j=1

〈[rj ]2〉pdf

j2 = ζ(2) · 〈r2〉pdf < ∞, (5)

(where ζ(. . .) is the Riemann ζ-function) is sufficient for the strong Kolmogorov
Law of Large Numbers to occur as we took into account only the PDFs having
a finite variance of single-step displacements; the variance is identical for all
successive steps (as a consequence of time homogeneity).

The second constraint

lim
n→∞

〈[R(n)]2〉se

n2 = lim
n→∞

〈r2〉pdf

n
= 0 (6)
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is sufficient for both the Central Limit Theorem anf the Law of Large Numbers to
occur, where the former quantitatively and the latter qualitatively were verified
by our numerical experiments.

Our main result clearly illustrates the concept of the basin of attraction
in the functional space of probability distribution functions. To describe this
concept we focus our attention on delta-Dirac, Gaussian, Poisson and Student
distributions which convergence to the Gaussian PDF, which is the attractor
of all these distributions. Their convergence is practically quite rapid as need
only dozen single steps of the walker. Note that only the Gaussian PDF remains
the Gaussian along the trajectory in the functional space, which illustrates the
concept of the stable distribution (i.e., its shape is preserved all the time); in
this sense other distributions considered by us are unstable. Though the Gaus-
sian attractor is, maybe, the most important one in functional space of PDFs,
other (stable and unstable) attractors also exist and play an increasing role in
probabilistic theories and their applications [7,8,9].
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