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Abstract. This paper presents various graphical techniques developed
by us to support research of some very hard combinatorial optimization
(CO) problems. Thanks to increased efficiency of algorithms and high
power of modern PC, we are able to make visualization of the solution
space and search trajectories, which in order, allows us to analyze and
design modern approximate approaches quickly running towards good
solution. We provide unique graphic representations of solution spaces
and search trajectories of modern approximate algorithms dedicated for
the job-shop problem, the one of the hardest problem in CO.

1 Introduction

Among variety of combinatorial optimization (CO) problems, the scheduling the-
ory provides many hard cases, among which the job shop scheduling problem is
known as a particularly hard one. This multidimensional, discrete CO problem
follows from Operations Research (OR) practice, has relatively simple formula-
tion, excellent industrial applications, finite but huge number of solutions and
unfortunately is strongly NP-hard. That’s why it is also considered as a perma-
nent indicator of practical efficiency of advanced scheduling algorithms, mani-
festing indirectly the power of OR theory and algorithmic skillfulness. During
last fifty years, a lot of various methods have been designed to solve the problem
in a quick time, see reviews in [1,8].

Modern approximate approaches, as an example tabu search (TS), simulated
annealing (SA) and genetic search (GS), dominate in the job-shop research car-
ried out in the last decade. Although made works improve significantly algo-
rithms efficacy (measured by the accuracy as opposing to the running time)
observed phenomena of surprisingly good accuracy and capricious convergence
depending on instances remain unexplained to the end. One supposes that the
answer lies in the chaotic structure of the solution space, characteristic for CO
problems. In particular, amazing TS algorithm, very fast and of excellent ac-
curacy below 4%, designed by us few years ago for the job-shop problem [4],
inspires us to explore these phenomena using advanced graphical tools.

We used for visualizations selected public benchmarks with the number of
operations varying from 225 to 2,000, [7]. Research was supported by Grant
T11A 01624 of the State Committee for Scientific Research.
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2 Problem, Models, Solutions

There are a set of jobs N = {1, . . . , n}, a set of machines M = {1, . . . , m} and a
set of operations O = {1, . . . , o}. Set O is decomposed into subsets corresponding
to the jobs. Job j consists of a sequence of oj operations indexed by (lj−1 +
1, . . . , lj−1 + oj) which should be processed in that order, where lj =

∑j
i=1 oi,

j = 1, . . . , n (l0 = 0), and
∑n

i=1 oi = o. Operation i must be processed on
machine µi ∈ M during the time pi > 0, i ∈ O. Each machine can process
at most one operation at a time. A feasible schedule is defined by start times
Si ≥ 0, i ∈ O, such that the above constraints are satisfied. We look for a feasible
schedule that minimizes the makespan maxi∈O(Si + pi).

The choice of the model (MILP, disjunctive graphs) determines the form of
the solution and thus character, structure, dimensionality and cardinality of the
space. We operate on the following permutation-and-graph model, [4], which has
the smallest cardinality with minimal fraction of infeasibility.

Set O can be decomposed into subsets Mk = {i ∈ O : µi = k}, k ∈ M .
The sequence of operations from Mk is defined by πk = (πk(1), . . . , πk(|Mk|)),
permutation on Mk, k ∈ M . Let Πk be the set of all permutations on Mk. The
processing order of operations is defined by m-tuple π = (π1, . . . , πm), where
π ∈ Π = Π1 ×Π2 × . . .×Πm. It is linked with schedule Si, i ∈ O by the digraph
G(π) = (O, R∪E(π)) with a set of nodes O and a set of arcs R∪E(π), where R =
⋃n

j=1
⋃oj−1

i=1 {(lj−1 +i, lj−1 +i+1)} and E(π) =
⋃m

k=1
⋃|πk|−1

i=1 {(πk(i), πk(i+1))}.
Node i ∈ O in G(π) has weight pi, arcs have weight zero. Processing order π is
feasible if G(π) does not contain a cycle. Then Si equals the length of the longest
path going to the vertex i (but without pi) in G(π), i ∈ O. Makespan Cmax(π)
for feasible π equals the length of the longest path (critical path) in G(π). Thus,
Π is the solution space, where a processing order π ∈ Π is its element.

3 Solution Space

Space Π is discrete, has dimension o, is finite, but its cardinality is of astronomi-
cal size. For the small historical instance FT10 (n = 10, m = 10, o = nm = 100),
we have |Π| =

∏m
k=1(|Mk|!) = (n!)m ≈ 4 · 1065, however only (!) approximately

4 ·1048 solutions are feasible, see [5]. The projection of feasible solutions of FT10
on 2D plane printed in high resolution 2400 dpi covers area of 4 · 1032 km2,
whereas the surface of Jupiter has only 6.4 · 1010 km2. “Typical” searching pro-
cedure is able to check at most 109 solutions, which corresponds to only 0.1 m2

of the area and can be shown as thread of 0.01 mm width and 10 km length.
The space Π can be perceived as hyper-graph, where nodes represent so-

lutions and each arc links two solutions, so that the former can be obtained
from the later by using a move. For the given solution π, the subset of solutions
(nodes) linked by single arc with π is called the hyper-neighborhood of π, and
can be generated by various types of moves. The move changes sequence of op-
erations processed on a common machine as follows: (A) A-move swaps a pair
v = (a, b) of two adjacent operations a, b, (S) S-move swaps a pair v = (a, b) of
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two any operations a, b, (I) I-move for a pair v = (a, b) of operations a, b, cuts
out operation a and then inserts it immediately after operation b (if a precedes
b), or immediately before operation b (otherwise). Let πv denote the process-
ing order obtained after the move v. The set of all moves of type Z performed
from π will be denoted by V Z(π), whereas the obtained hyper-neighborhood by
N Z(π) = {πv : v ∈ V Z(π)}, Z ∈ {A, S, I}. The sequence of successive solutions
π0, π1, . . . , πr, where πi+1 ∈ N Z(πi), i = 0, 1, . . . , r − 1 constitutes the trajec-
tory (path in the hyper-graph). Hyper-neighborhoods of type A, S, I have strong
connectivity property, i.e. for each pair of solutions α, β ∈ Π exists trajectory
so that α = π0, π1, . . . , πr = β and r is finite.

Because of hyper-neighborhood size, its selected subset has been used in local
search and called simply neighborhood. There are a few attributes for neighbor-
hoods generated by moves: size, feasibility, usefulness and connectivity, [5], which
influence on trajectories going through the space. The most popular neighbor-
hoods are the following two based on A-moves. The first is generated by move set
V A1(π) ⊆ V A(π), where v = (a, b) ∈ V A1(π) if only a and b belongs to a critical
path in G(π), [3]. All these moves are feasible (leads from feasible to feasible
solution), but some of them are useless (leads to essentially worse solutions).
Neighborhood has only weak connectivity property (β is not any but one of op-
timal solutions). The second is generated by the move set V A2(π) ⊆ V A1(π),
obtained from V A1(π) by elimination of all useless moves, with the help of block
property; all moves are feasible, [4]. Although N A2(π) does not have the con-
nectivity property, in experiments it behaves better than other neighborhoods.

4 Distances in the Space

We define the distance DZ(π, σ) between processing orders π, σ ∈ Π as the min-
imal number of moves Z ∈ {A, S, I} necessary to go from π to σ (i.e. the shortest
path in hyper-graph). Clearly, we have DZ(π, σ) = 1 for σ ∈ N Z(π). It has been
shown, [5], that because move is being performed inside single machine, then
permutation πk can be mapped onto permutation on set Nk = {1, 2, . . . , |Mk|},
k ∈ M . Thus, the measure DZ(π, σ) =

∑
k∈M DZ

k (πk, σk) and its properties can
be derived from properties for measure DZ

k (πk, σk) between permutations πk

and σk on the set Nk. Follows results from [2], there have been collected in [5]
basic properties of measures for all types of moves (A,N,I): recipes for calcula-
tion, mean value, variance and computational complexity. Here only notice that
the measure DA

k (πk, σk) equals the number of inversions in permutation π−1
k σk,

where π−1
k is the inverse permutation πk, k ∈ M . Hereinafter we analyze the use

of A-moves only, thus upper index A will be skipped in proper notions.
For the sake of huge size of the space, its character can be analyzed statis-

tically by random sampling. In Fig. 1 (left) one can find, for typical bench-
mark ta04 (n = 15, m = 15, o = 225), the distribution of DIST (π) =
100 ∗ D(π, πREF )/Dmax, where Dmax = maxα,β D(α, β) = mn(n − 1)/2, taking
into account the random sample of ALL solutions and the random sample of
FEASible solutions, where πREF is a fixed reference solution (optimal solution).
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Fig. 1. Instance ta04: Distribution of DIST (π) (left) and RE(π) (right) for 500,000
random solutions; ALL - for any solutions, FEAS - for feasible solutions

Curve ALL fits ideally to the theoretical distribution of D(α, β), with the mean
0.5∗Dmax. From curve FEAS one can read the mean value of DIST distribution
for feasible solutions equal approximately 0.25 ∗ Dmax; this holds for almost all
benchmarks ta–. Both distributions do not depend on the choice of πREF .

The distribution of RE(π) = 100 ∗ (Cmax(π) − Cmax(πREF )/Cmax(πREF ),
which is the relative error, for the same sample of FEASible solutions is shown
in Fig. 1 (right). The distribution is close to gaussian. RANdomly found solu-
tion has RE≈120% (standard deviation 15%), whereas we know that the best
constructive algorithm called INSA offers RE≈20% and the best improvement
algorithm TS has RE≈4%. Note also, that finding feasible solution with RE be-
low 50% is statistically infinitesimal. Results remain valid for all ta– benchmarks.
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Fig. 2. Instance ta04: 2,000 random feasible solutions in coordinates DIST/RE (left)
and X/Y (right); � marks starting solution found by INSA, ◦ - optimal solution
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The main goal of the space analysis is the identification of the landscape
and its typical element called the big valley, which plays role of an attractor
in the space. Its presence means that distances between good locally optimal
solutions and the global one are significantly positively correlated with goal
function values of these solutions. It also means that majority of very good local
optima concentrates in a relatively small area of the solution space.

In Fig. 2 one can find plot of random feasible solutions showing the correlation
0.3 between DIST and RE (statistically significant on the level 0.1%), both
calculated with respect to the optimal solution πREF . This fact confirms the
existence of “big valley”, not only for good locally optimal solutions (as it showed
in [5]) but also for all feasible solutions.

5 2D Transformations

Our aim is to transform solutions πj ∈ Π, j = 1, . . . , t into points on 2D plane
“rationally” preserving the distance from Π. Problem of transformation contin-
uous n-dimensional space Rn into space R2 is known for years, see the review
in [6]. However, some troubles appear in the application to CO problems. First,
the source space is discrete. Second, metric in Π is not Euclidian, takes only dis-
crete values, and can influence on the final result of the transformation. Third,
and the most important in our opinion, the calculation process should be cheap
since in practice we need to transform 1,000 . . . 10,000 solutions from the space
with dimension 200. . .2,000. That’s why we focus chiefly on reference points
approaches. Among a few proposals, we describe below only one, fast and of
satisfactory mapping accuracy (accuracy is measured by the correlation between
distances in space Π and Euclidian distances of 2D images). Let σi, i = 1, . . . , r
be a sequence of reference solutions. Each π is transformed into point (x, y) on
2D plane according to the following formula

[
x
y

]

=
r∑

i=1

D(π, σi)

[
sin( (i−1)π

r )
cos( (i−1)π

r )

]

(1)

We performed tests on most of 80 ta- benchmarks, with r = 3 reference
solutions: σ1 = πREF , σ2 – solution generated by algorithm INSA used as the
starting point for our method TS in [4], and σ3 – solution generated by SPT
rule, one of the most commonly applied in constructive algorithms. In the series
of graphical runs for a few known algorithms, we found similar results for all
benchmarks. Then, we discuss here only one, typical. In Fig. 3 one can find
search trajectories (in various axes) performed by algorithms TS, SA, RANdom;
all work on neighborhood N A2. Compare chaotic track of algorithm RANdom
trapped in a local sub-area of the solution space with directional track of TS; in
these conditions the behavior of SA is similar to RANdom. (From unpublished
here results we found that RANdom and SA behaves even worse if we replace
N A2 by greater neighborhood e.g. N A1 or N A.) This static figure does not reflect
the evolution of the trajectory in time, therefore in Fig. 4 we have provided speed
of convergence of tested methods in iterations (in time) – TS is the best.
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Fig. 3. Instance ta04: 10,000 iterations of algorithms TS, SA, RANdom (ploted every 10
iterations) in coordinates DIST/RE (left) and X/Y (right); � marks starting solution
found by INSA, ◦ - optimal solution
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Fig. 4. Speed of convergence for the instance and algorithms from Fig. 3; there are
marked only solutions reducing the makespan

 

Fig. 5. Instance ta04: Optimization surface spanned on solutions from Fig. 2 right
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Clearly, the choice of r and the location of reference solution influences on
the image – this subject is currently being studied. Primal tests suggest that
reference solutions should be spread widely, whereas the increase of r does not
influence on mapping accuracy significantly.

6 Optimization Surfaces

Using certain transformation of solutions into 2D points, we can try to draw in
3D the optimization surface, spanned on points (xi, yi, zi), i = 1, . . . , t, where
(xi, yi) is the image of solution πi on 2D, zi = RE(πi), and π1, . . . , πt is the
sample of feasible solutions from Π. An example of such surface spanned on a
part of points from Fig. 2 is shown in Fig. 5. It destroys our classical imagination
about optimization process – the surface is sharp without any regularity, like the
brush, fur, high mountain or stone forest. Local extremes are distributed densely,
chaotically, and act as deception points. The primal two natural associations are
more suitable since through the increase of the sample cardinality one obtains
higher density of tops and wells on almost the same area. The figure indicates
fundamental troubles in the research of CO problems, formulated as the rhetori-
cal question “How to find the proper path on this surface being a small ant with
limited visibility?” This pessimistic attitude is overcomed by existing algorithms
– TS from [4] finds such path intentionally and consciously, tending to RE=0%
for ta04 (RE≈4% for all ta– instances). Other methods, like SA or GS search
space through the sampling points on the surface - properties of such methods
are completely predicable. That’s why frequently SA and GS need support by
complete/partial neighborhood search procedures in order to reach satisfactory
quality.
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