
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 507–514, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Proposal of the Programming Rules for VHDL Designs

Jan Borgosz and Bogusław Cyganek

AGH – University of Science and Technology
30-059 Krakow, Poland

{borgosz, cyganek}@agh.edu.pl

Abstract. This paper presents novel developments of a programming
methodology – in a form of the programming paradigms – for the group of
hardware description languages (HDL). On the one hand, this group of
languages is very similar to other high-level programming languages. From the
other hand a description, which then must fit specific hardware arrays, needs to
be coded in a special way with particular attention devoted to the code
structure. In this paper it will be shown that the specific programming rules can
make this process easier and more efficient. Also clarity of the code can be
greatly improved, what is very important in the case of a team work. The
complete set of the VHDL programming rules is presented, as well as examples
of increased coding efficiency. This approach is much more general and stands
in opposition to the other literature sources in which only selective
programming advices are provided. Presented ideas were verified in many large
telecommunication projects developed on the Xilinx’ ISE Foundation platform.

1 Introduction

This paper is devoted to the programming rules for efficient programming in the
VHDL language, which belongs to the group of the hardware description languages
(HDL) for very high speed integrated circuits (VHSIC) [6]. Coding with clearly set
rules is very important part of the properly set team oriented programmers’ work. The
main results of such approach to the problems are:

1) Shorter time needed for the different people to understand code;
2) Easier maintenance of the code;
3) Shorter time of the code development;
4) Decreased probability of the occurrence of the functional bugs;
5) Faster debugging;
6) An ability to use object oriented and template techniques.
Many effort was put to set programming rules for the high level languages like C,

C++. There are many publications and researches about this subject, like
[7][8][9][10]. The authors of this work, motivated by benefits listed above, have
decided to find similar paradigms for VHDL. The main intention of this document is
to show new set of the rules for all the people who are interested in improving coding

508 J. Borgosz and B. Cyganek

techniques. This document should be help for all advanced VHDL team members, as
well.

2 Review of the Proposals of the VHDL Coding Rules

The programming process is not unique, therefore there are possible many
approaches to do the same programming task – some of them are very specific, some
provide more benefits than other. In this chapter we have focused on the proposals
given by the other programmers and software vendors.

Xilinx is one from the most important software vendors of the modern VHDL
tools’ market. However, in Xilinx documentation only one appendix treats about this
subject. In few words it is possible to say, that Xilinx recommends to keep as close as
possible to hardware. Presented rules impose names coming from the FPGA structure.
This approach is not very close to programming rules known for high level
languages. As a result, projects written in this way can not be easily ported between
platforms and scaled. Advices given by Xilinx may be explained by fact, that Xilinx
takes care about successful implementation.

It is hard to find any document of these two vendors that would be entirely
devoted to the VHDL programming conventions. Of course there are available online
helps and tutorials, but after lecture the problem of the naming and programming
rules still remains open.

Very interesting proposal of the naming convention may be found in the VFIR
project [1]. Authors of this project have made special document with set of rules for
VHDL programmers, with simplified ideas close to the ones presented in this paper.
They have proposed simplified suffix system to distinguish between objects in VHDL
language (strongly hardware dependent). In other work author points a need to use
special rules and tries to propose them even for the clock signals edges [2]. There is
also an another, and even more general, approach to the programming convention
problem [5]. The problem of naming conventions is often omitted or simplified, even
in the case of the VHDL handbooks like the VHDL CookBook [2].

3 New VHDL Programming Paradigms

The presented hereafter approach was created and tested in many successfully
finalized VHDL projects. Finally, a well balanced solution was achieved that is as
general as possible and as close to hardware implementation as needed.

In addition to the naming conventions, some additional rules have been imposed
on projects, that brought the whole process closer to the object-oriented approach
[4][9][10]. These rules are listed below:

1) Design is divided into building blocks;
2) Each building block is completely independent from the other blocks;
3) Parameters of each block are given with generic construction;
4) An interface to each block is constrained with global constants;

Proposal of the Programming Rules for VHDL Designs 509

5) Blocks are connected in queue fashion, not in the star fashion;
6) Signals which are used in different blocks are passed from block to block;
7) Each block may be replaced or removed without any changes to the neighbor

blocks;
8) All synchronous logic in blocks works with the some clock edge.

Usage of keyword generic allows to make code closer to the template idea. It is
worth to say that a properly set VHDL design is object oriented in its nature.

3.1 General Naming Conventions

In VHDL designs we can distinguish the two most important types of objects:
1) Connections;
2) Building blocks.
Of course, these objects may be divided to subtypes due to its hardware nature.

Connections may be signals between building blocks or external input / outputs.
Building blocks may be low level elements of the FPGA structure or high level
structures composed by the programmer.

General rule for the naming these two kinds of objects is that the instance name
describes functionality as shortly as possible. When the direction of signal flow is
important, its name should reflect this fact too. Created in this way part of the name
will be called a functionality name.

So a name of each object in VHDL may be created due to the following
concatenation rule:

FullName = PrefixName + FunctionalityName + SuffixName(optional)

Where prefix name comes from type of a VHDL object and suffix name is an optional
information. Suffix may reflect additional information about associated type of the
FPGA’s building block hardware.

Authors propose two different rules of combining words into names. In the first
rule, words in a name are separated by starting each new word with a capital letter. In
the second rule, words are separated with the underscore “_” character. A choice of
used convention should be done due to the software environment. For example, for
Xilinx software the second convention will be more appropriate, due to the fact that
Xilinx software always convert characters to lowercase.

Tables 1-3 contain proposal of the prefixes and suffixes for different objects which
can be applied in Xilinx ISE environment (first rule).

Table 1. Set of the rules for design objects – building blocks, words separated with a capital
letter

Design element Rule Example
Entity Prefix “E” EAdder
Architecture Prefix “A” ABehavioralAdder
Instantiation Prefix “I” IAdder
Package Prefix “P” PMyPackage

510 J. Borgosz and B. Cyganek

Table 2. Set of the rules for design objects – signals and miscellaneous, words separated with a
capital letter

Design element Rule Example
Constant Prefix “c” cBitSize
Generic – scalar Prefix “gs” gsGenericValue
Generic – vector Prefix “gv” GvGenericValue (cBitSize downto 0);
Variable – scalar Prefix “vs” vsValue
Variable – vector Prefix “vv” vvValue (cBitSize downto 0);
Signal – scalar Prefix “ss” ssAlarm
Signal – vector Prefix “sv” svAlarm (cBitSize downto 0);
Input port – scalar Prefix “ips” ipsStrobe
Output port – scalar Prefix “ops” opsStrobe
Input port – vector Prefix “ipv” ipvData (cBitSize downto 0);
Output port – vector Prefix “opv” opvData (cBitSize downto 0);
Bidirectional port –
vector

Prefix “bpv” bpvData (cBitSize downto 0);

Bidirectional port –
vector

Prefix “bpv” bpvData (cBitSize downto 0);

Array Prefix “a’ aMemory
Type Prefix “t” tDoubleArray
Subtype Prefix “s” + Type

Name
sCollectiontDoubleArray

Table 3. Examples of the rules for design objects – suffixes connected to hardware, words
separated with a capital letter

Exemplary hardware element Rule Example
BUFGP Sufix “BUFGP” ipsClockBUFGP
IBUF Sufix “IBUF” ipsResetIBUF
FD Suffix “FD” ILatchFD
RAM16x1 Suffix “RAM16x1” IMemoryRAM16x1

4 Adapting UML for the Illustration of the VHDL Design

It seems to be very interesting to adopt UML convention for the VHDL projects. As
mentioned before, a nature of VHDL and hardware projects is close to an object
oriented way of thinking. Thanks to this observations it was possible to use modified
UML diagrams for illustration of VHDL projects. This idea is depicted in Fig. 1.

As can be seen, a VHDL entity with its name may be treated as a class name, ports
may be resources and finally methods may be replaced with functionality.
Additionally, a new part was added, called Generics. This new element of the block
presents a possibility to parameterize an entity. This is an analogy to the templates in
C++ [9]. Due to this assumptions a form of the UML cell for the class (Fig. 1a) may
be replaced with a new form for the entity in VHDL (Fig. 1b).

Of course owning relation may be expressed as well. In the next chapter we
present simple example of these ideas.

Proposal of the Programming Rules for VHDL Designs 511

(a) (b)

Fig. 1. a) Standard UML scheme used for the class notation. b) Adopted notation for the
VHDL entity

5 Example of the Design with Proposed Programming Rules

As an example we present design with two independent PRBS (Pseudo Random Bit
Sequence) generators. Each generator is built with the same parametrical code – a
practical demonstration of the template technique. Fig. 2 depicts hardware structure
of this design. As may be seen, inputs to the block are: ipsClock, ipsReset,
ipsPRBSSelect, and an output constitutes opsPRBSOutput. Inputs
ipsClock, ipsReset are common for both blocks: PRBS9 and PRBS11
generators. Outputs from generators opsPRBSOutput are multiplexed and finally
output of the selected generator is an output from the whole design, also named
opsPRBSOutput. It is important to see, that high clarity of the descriptions allows
to analyze design quickly. Also information about kind of object is coded into its
label. Detailed description of the PRBS generator will be presented in the next
section.

5.1 Template Implementation of the PRBS Generator

The PRBS generator has architecture declared as follows:

entity EPRBS is
Generic(
gsFirstXORInput : integer := 9;
gsSecondXORInput : integer := 5;
gsActiveClockEdge : std_logic := '0'

);
 Port (

 ipsClock : in std_logic;
ipsReset : in std_logic;
opsPRBSOut : out std_logic
);

end EPRBS;

There are three parameters needed to define the PRBS generator structure. Two of
them (gsFirstXORInput, gsSecondXORInput) come from definition of the
PRBS polynomial and the third (gsActiveClockEdge) adopts clock edge of the
module to rest of the system. A definition of the PRBS generator entity is presented
below.

512 J. Borgosz and B. Cyganek

Fig. 2. Hardware structure of the presented example

Please note, that used programming rules immediately allows to identify type of an
object. Moreover, any mistakes may be found and corrected faster. Also structure of
the generator is more clear than with an ordinary naming convention.

architecture EPRBSBehavioral of EPRBS is
 signal svBuffer : std_logic_vector ((gsFirstXORInput) downto 0);

begin
 -- PRBS calculation
 process (ipsReset, ipsClock)
 begin
 if (ipsClock'event and ipsClock = gsActiveClockEdge) then
 svBuffer (0) <= svBuffer (gsFirstXORInput) XNOR svBuffer
 (gsSecondXORInput);
 end if;
 end process;

 -- PRBS output generator
 process (ipsReset, ipsClock)
 begin
 if (ipsReset = '1') then
 opsPRBSOut <= '0';
 elsif (ipsClock'event and ipsClock = gsActiveClockEdge) then
 opsPRBSOut <= svBuffer (gsFirstXORInput);
 end if;
 end process;

 -- Buffer shifter
 process (ipsReset, ipsClock)
 begin
 if (ipsReset = '1') then
 svBuffer (gsFirstXORInput downto 1) <= (others => '0');
 elsif (ipsClock'event and ipsClock = gsActiveClockEdge) then
 svBuffer (gsFirstXORInput downto 1) <=
 svBuffer ((gsFirstXORInput -1) downto 0);
 end if;
 end process;

end EPRBSBehavioral;

Proposal of the Programming Rules for VHDL Designs 513

Fig. 3. Illustration of the template instantiation with the modified UML diagram

5.2 Instantiation of the PRBS Generator’s Template

Instantiations of the created template are shown below:

-- PRBS 9
IPRBS9: ePRBS
Generic map (
gsBufferSize => 9,
gsFirstXORInput => 9,
gsSecondXORInput => 5,
gsActiveClockEdge => '0'
)

PORT MAP(
ipsClock => ipsClock,
ipsReset => ipsReset,
opsPRBSOut => ssPRBSOut1

);

-- PRBS 11
IPRBS11: ePRBS
Generic map (
gsBufferSize => 11,
gsFirstXORInput => 11,
gsSecondXORInput => 8,
gsActiveClockEdge => '1'
)

514 J. Borgosz and B. Cyganek

PORT MAP(
ipsClock => ipsClock,
ipsReset => ipsReset,
opsPRBSOut => ssPRBSOut2

);

opsPRBSOut <= ssPRBSOut1 when ipsPRBSSelect = '0' else
ssPRBSOut2;

Fig. 3 depicts relation between template and PRBS generators, instantiated to the
design. Values of all parameters, basic functionality and input / output ports may be
easily seen. The proposed programming rules allow to distinguish objects without any
troubles.

6 Conclusions

This paper presents a proposal of the new programming rules for the VHDL designs.
In opposition to other sources, a detailed description is presented. Also UML
diagrams were adopted to make code more clear. Presented ideas were successfully
tested with many projects, like STM-1,4,16 framers and mappers (clock speed 155
MHz with 16 bit wide data bus). Thanks to a well balanced and universal approach,
the obtained code may be easily resized and reused. For example, an implementation
of the error counter and synchronization tracking module for STM – 16 and STM – 4
took 20% of the time needed for STM – 1 (the first module).

References

1. Ameseder T., Pühringer T., Wieland G., Zeinzinger M.:VFIR Coding Conventions 1.0.,
WWW (2003)

2. Ashenden P.: VHDL Cookbook , White Paper available through WWW.
3. Cohen B.: Coding HDL for Reviewability, MAPLD 2002
4. Cyganek B.:”Programming Paradigms”, White Paper, Krakow (1999)
5. Gord A.: HDL Coding Rules and Guidelines, WWW (2003)
6. IEEE Standard, VHDL, 1987.
7. Meyer S.: Effective C++. Second Edition. Addison-Weseley (1998)
8. Meyer S.: More Effective C++. Addison-Weseley (1995)
9. Stroustrup B.: The C++ Programming Language. Third Edition. Addison-Weseley (1997)
10. Taligent: Taligent Guide to Designing Programs. Addison-Weseley (1995)
11. Xilinx: XST User Guide, Xilinx, USA (2003)

	Introduction
	Review of the Proposals of the VHDL Coding Rules
	New VHDL Programming Paradigms
	General Naming Conventions

	Adapting UML for the Illustration of the VHDL Design
	Example of the Design with Proposed Programming Rules
	Template Implementation of the PRBS Generator
	Instantiation of the PRBS Generator™s Template

	Conclusions
	References

