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Abstract. The principal aim of this work is the presentation of a
symbolic calculation computer analysis for exploring electromagnetic
fields for not inertial observer. Based on Frölicher-Nijenhuis super-Lie
R-algebra, we developed a learning environment for axiomatic classical
electromagnetics and electrodynamics. A collection of programs devel-
oped on Mathematical programming environment has been builded for
the N-graded Graßmann Algebra, Z-graded endomorphisms and graded
commutators.

1 Introduction

In axiomatic classical electromagnetic is postulated that the density pseudo dif-
ferential form J, grade J = d − 1 ∈ N and the strength or ‘magnetic flux’ F,
grade F = 2 are absolute, are observer-free.

– Charge current conservation
∫

∂V
J = 0 ∈ R (1)

– Conservative force field interaction
∫

∂C
F = 0 ∈ R. (2)
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The first axioms is the conservation of the density pseudo-form of the Charge-
Current. The second axiom is interpretd as the conservation of the work (on
small test charge-current) in the space-time. See for complementary references
and formal approach Cruz & Oziewicz [1, 2003].

Starting with such axiomatic approach we use the Frölicher and Nijenhuis[2,
3] Lie R-operation to derive observer-dependent form of the four Maxwell equa-
tions.

In Section 2 we present some necessary definitions. Section 3 is devoted to
present the principal lines of the algorithm. Finally in Section 4 we present
conclusions and objectives for future work.

2 Basic Definitions

Let F be an R-algebra of scalar fields on Space-Time. The F-modul of the
differential 1-forms is denoted by M .

Definition 1 (Graßmann algebra of differential forms). The N-graded
Graßmann F-algebra of differential forms is denoted by:

M∧ ≡ ⊕M∧i = M∧0 ⊕ M∧1 ⊕ M∧2 + · · · , M∧0 ≡ F , M∧1 ≡ M. (3)

Definition 2 (Observer field). Is a not necessarily integrable product struc-
ture that splits F-modules of the differential one-forms M and one-vector fields,
M∗, into ‘time-’ and ‘space-’ F-submodules. An idempotent a2 = a ∈ der(M∧)
is said to be observer if tr a = 1,and dim im a = dim of time = 1.

In the present paper we represent an observer by κ. A 1-dimensional F-modul
imκ, is an ideal in the Graßmann F-algebra, and the projector (id − κ), is an
F-algebra map

(id − κ) ∈ algF (M∧, M∧/imκ) . (4)

Definition 3 (Derivations of Graßmann algebra). Let |A| ≡ grade A ∈ Z.
A map A : M∧ → M∧ is said to be a graded F-derivation, A ∈ der(M∧), if
Leibniz axiom holds:

A(α ∧ β) = (Aα) ∧ β + (−)|A||α|α ∧ Aβ. ∀ α, β ∈ M∧ (5)

Example: every observer is F-derivation, a ∈ derF (M∧), grade a = 0 ∈ N.

Definition 4 (Lie Super (≡ Z2-graded) F-algebra of derivations). The
graded commutator (bracket) is:

(EndM∧) ⊗ (EndM∧)
{ , }−−−−−−−−→

super-bracket
(EndM∧),

{A,B} ≡ A ◦ B − (−)|A||B|B ◦ A ∈ der(M∧),

grade{A,B} = gradeA + gradeB.
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For the graded commutator the graded version of the Jacobi identity holds,

{A, {B, C}} = {{A, B}, C} + (−)AB{B, {A, C}}. (6)

if A and B be graded derivations; A,B ∈ der(M∧). Then {A,B} ∈ der(M∧).

Definition 5 (Ślebodziński Lie derivation). Let A ∈ der(M∧) be any
derivation. The R-derivation introduced in 1931 [4] is:

LA ≡ {A, d} ∈ derR(M∧). (7)

Definition 6 (Frölicher and Nijenhuis R-algebra). A derivation [κ, ρ]FN ∈
derF (M∧) exit, such that

L[κ,ρ]F N
≡ {Lκ,Lρ} ∈ derR(M∧), (8)

[κ, ρ]FN = (−1)κ+ρ+κρ · [ρ, κ]FN .

The Frölicher-Nijenhuis [1956] binary operation on the Lie M∧-module
derF (M∧), denoted by [·, ·]FN ∈ derF (M∧), with grade[·, ·] = +1, is an example
of the Gerstenhaber R-algebra.

An arbitrary derivation D ∈ derR(M∧) possess the following unique decom-
position

D = (L ◦ i + i ◦ L)D = {iD, d} + i{D,d}. (9)

The generalization of the Frölicher and Nijenhuis decomposition for an extension
of DGA, was given in [Oziewicz 1991].

3 Outline of Algorithm

The builded functions contains:

– Appropriate data types designed for: N-graded F-algebra of the differential
forms M∧. Z-homogeneous graded endomorphism End (M∧), Poisson graded
commutator (bracket) [ , ]FN , etc.

– Constructors for graded F- and R-derivations, Lie F- and R-derivation, ob-
servers ∈ der, and creations and annihilation operators ∈ End . Every anni-
hilation opertator is a F-derivation.

– Procedures for Graßmann multiplication ∧, composition ◦ of graded endo-
morphisms and Jacobi identity for Lie and Poisson R-brackets.

A grammar definition is necessary in the way that the abstract representation
be in accordance with mathematical formal definition of objets. By example: for
the N-graded Graßmann F-algebra of differential forms M∧we have:

– M∧ is generated by F and M ie M∧ = gen{F , M}.
– If α, β ∈ M∧ then α + β ∈ M∧ and α ∧ β ∈ M∧.



Symbolic Calculation for Frölicher-Nijenhuis R-Algebra 555

– grade(α ∧ β) = gradeα + gradeβ + grade∧, grade ∧ = 0 ∈ N.
– ∀α ∈ M ⇒ grade α = 1 and α ∧ α = 0.
– The creation Graßmann operators is defined by: eαβ ≡ α∧β, eα ∈ End (M∧).
– The ‘inner’ or ‘interior’ action ‘i’ of M∧ on M∗∧ is said to be the annihilation

operator iM ∈ derF (M∧).

In practical computation operators e and i play an important role, e is a data
type constructor and i is a data type selector:

M∧ ⊗ M∧ e−−−−→ M∧

M∗ ⊗ M∧ i−−−−→ M∧.

For derivations operator we need the set of symbols: {name, grade, +}. With
those and the Leibniz axiom we build the necessary expressions for the derivation
operation, and for graded commutator we need {name, grade, +, ◦}.

For Frölicher-Nijenhuis binary operation we use the explicit form of the
bracket: Let ρ, κ ∈ der and δκ◦ρ ∈ der

[ρ, κ]FN ≡ −{κ, Lρ} − {δκ◦ρ, d} ∈ derR (10)

Here we use a F-modul map p ∈ homF (M, M∧) lifted to the unique (Z2-graded)
F-derivation

homF (M, M∧) 
 M∧ ⊗F M∗ � p �→ δp ∈ derF (M∧),

with grade(δ) = 0, such that δp|F = 0 and δp|M = p.

4 Conclusions and Future Work

The axiomatic approach could possess pedagogical advantage in teaching the
fundamentals of electromagnetic laws as explicitly observer-dependent and gives
a power tool in the exploration of physical laws. Symbolic calculus offer an ap-
propriate tool in the exploration of abstract algebra and its applications. Future
work will be devoted to

– Get procedures for splitting differential forms and differential equation in
Space Time,

– automatize algorithmically all expressions of four Maxwell equations for non
inertial observers

– build higher order words of Lie Poisson brackets for Lie derivation of observer
operators {k, d} and find all identities inside the Lie algebra gen{d, k1, k2}.

References
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�Lódź, Vol LIII, (2003), 107-140, ISSN 0459-6854.
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2. Frölicher A. and Nijenhuis A., Theory of vector valued differential forms, Part I,
Indagationes Mathematicae 18(1956), 338–359.
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