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Abstract In this paper we interpret the Berlekamp-Massey algorithm
(BMA) for synthesis of linear feedback shift register (LFSR) as an al-
gorithm computing Pade approximants for Laurent series over arbitrary
field. This interpretation of the BMA is based on a iterated procedure for
computing of the sequence of polynomials orthogonal to some sequence
of polynomial spaces with scalar product depending on the given Laurent
series. It is shown that the BMA is equivalent to the Euclidean algorithm
of a conversion of Laurent series in continued fractions.

1 Introduction

Let f0, . . . , fn−1, . . . be a sequence of elements from arbitrary given field F. The
given sequence is generated by the given LFSR iff this sequence satisfies the
linear recurrence relation of order m,

∑m
i=0 fi+kqi = 0, k = 0, 1, 2, . . . with the

initial values f0, . . . , fm−1, where Q(x) =
∑m

i=0 qix
i, qm = 1 is the characteristic

polynomial of the given LFSR. (see [1].) The reciprocal characteristic polyno-
mial Q∗(x) = xmQ(1/x) is called the feedback polynomial of the given LFSR.
Denote by Ln(f) the least degree of the polynomial Λn generating the sequence
f0, . . . , fn−1. The number Ln(f) is called the linear complexity of the sequences
f0, . . . , fn−1. ([1].) The sequence L1(f), . . . Ln(f) is called the linear complexity
profile of the sequence f0, . . . , fn−1. J. L. Massey [2] interpreted the Berlekamp
algorithm [3] as the algorithm computing of the linear complexity profile for the
given sequence and generating the corresponding sequence of the characteristic
polynomials. ( see [1].) Berlekamp’s variant of the BMA is equivalent to the
variant of the Euclidean algorithm (EA) given for BCH codes decoding ([4].) In
[5], [6] was investigated connections between the BMA and continued fractions.
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In [7] was given the matrix generalization of the BMA. This generalization was
used in [8] in the proof of the equivalence the BMA and the EA for decoding
of BCH codes. We interpret the BMA from the point of view of theory of Pade
approximants and orthogonal polynomials.

2 Pade Approximants for Laurent Series, Continued
Fractions, Linear Complexity, and BMA

Any expression zn(c0 + c1/z + c2/z2 + . . . ), c0 �= 0, with any integer n and
coefficients ci ∈ F is called a formal Laurent series. The set F ((1/z)) of all
Laurent series forms the field with respect to the sum and product operation
(see [9]). Any series f(z) with null integral part may be expanded in continued
fraction

f(z) =
1

a1(z) +
1

a2(z) +
1

a3(z) + . . .

.

The proper fraction formed the first n levels of a given continued fraction, is
called a n−th convergent to a given continued fraction and is denoted by τn. The
numerator Pn and the denominator Qn of the τn are calculated by the recurrent
formulas Qn = anQn−1 + Qn−2, Q1 = 1, Q0 = 0, Pn = anPn−1 + Pn−2, P1 =
a1, P0 = 1. (see [9].) The polynomials Qn and Pn have degrees sn − 1 and sn ,
where sn = d1 + . . . + dn, s0 = 0, dn = deg an. We consider only Laurent series
f(z) =

∑∞
i=0 fiz

−i−1 with null integral part. It is known

Theorem 1. The following statements are equivalent:
(i) the LFSR with the characteristic polynomial Q(z) generates the sequence

f0, . . . fL−1;
(ii) there exist the polynomials P, Q such that

f(z)Q(z) = P (z) +
c

zL−deg Q+1 + . . . , c ∈ F,

where deg P (z) < deg Q(z);
(iii) there exist the polynomials P, Q such that

f(z) − P (z)
Q(z)

=
b

zL+1 + . . . , b ∈ F, deg P < deg Q.

For any n there exists a unique uncancelled proper fraction Pn/Gn, deg Gn ≤ n
such that f(z)Qn(z) = Pn(z) + c

zn+1 + . . . , c ∈ F. (see [9]). This fraction is
called n−th (diagonal) Pade approximants πn of a number f . It a numerator Pn

Suppose πn = Pn/Gn and Q = Gn is the polynomial of minimal degree m ≤ n
such that f(z)Q(z) = P (z) + cn+1

zn+1 + . . . ; then the sequence f0, . . . , fn+m−1
satisfies the recurrence relation

∑m
i=0 fi+kqi = 0, k = 0, . . . , n − 1. Denote by

Πn degree of the fraction πn.
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Theorem 2. LΠn+n = Πn.

If the degree of denominator of n−th Pade fraction is equal n, then the index n
is called normal. If n0 < n1 there are adjacent normal indexes, then ([9]) for any
k, n1 > k ≥ n0, f(z)Gn0(z) − Pn0(z) = Gn0(z)(cz−n0−n1 + . . . ) = ez−n1 + . . . =
bz−k−1 + . . . , c, e, b ∈ F and Gk = Gn0 , n0 = Πn0 = Πk = Lk+Πk

= Lk+n0 . The
sequence of normal indexes coincides with the sequence s0, s1, s2, . . . and Pade
approximants πsn = τn = Pn/Qn. ([9].) Therefore, for any k, sn ≤ k < sn+1, is
valid πk = πsn

= τn, Gk = Gsn
= Qn and for any sequence {f0, . . . , fsn+k}, k =

sn − 1, . . . , sn+1 − 2 the minimal LFSR has the characteristic polynomial Qn.

Theorem 3. Lk+sn
= sn, sn−1 ≤ k < sn.

From theorem 3 easy follows well known

Theorem 4. If the LFSR of the complexity Lk(f) generates the sequence
f0, . . . , fk then Lk+1(f) = Lk(f), else Lk+1(f) = max{Lk(f), k + 1 − Lk(f)}.

3 The Interpretation of the BMA in Terms of Orthogonal
Polynomials

The following part of the paper does not assume any knowledge about the BMA
and can be used for a alternative description of this algorithm.

Let Pol(n) be the space of polynomials of degree less than n over a field F .
For the given sequence {f0, . . . , fn−1} over a field F we consider the linear func-

tional lf (P ) =
∑n−1

i=0 fipi, P (z) =
n−1∑

i=0
piz

i. over the space Pol(n). On the space

Pol(n) may be defined the scalar product (P, Q) = (P, Q)f of polynomials P, Q
by equality (P, Q) = lf (PQ). Obviously is valid the identity (P, Q) = (PQ, 1).
Following [9], we rewrite the equalities

∑m
i=0 fi+kqi = 0, k = 0, . . . , s − 1, where

Q(z) =
∑m

i=0 qiz
i, qm = 1, as the equalities (Q(z), zk) = 0, k = 0, . . . , s − 1,

where (P, Q) is the scalar product of polynomials P, Q. Orthogonality of vectors
is denoted by the symbol ⊥ . Therefore, the system of equalities (Qn(z), zk) =
0, k = 0, . . . , sn − 1 is equivalent to the relation Qn(z) ⊥ Polsn . Hence
Qn ⊥ Qn−1 and the sequence of polynomials Qn(z) =

∑sn

i=0 qn,iz
i, is uniquely

determined by the mentioned above condition of the orthogonality.
Suppose that we have computed the polynomial Qn by the given se-

quence f0, . . . , f2sn−1. It is valid Λ2sn = Qn. Computing (Qn(z), zk) =∑m
i=0 fi+kqn,i, m = sn, k = m, m + 1, . . . we find minimal k such that

(Qn(z), zk) �= 0. Hence, we can find sn+1, because k = sn+1 − 1. Since the
polynomial Qn(z) satisfies the condition

∑sn

i=0 fi+kqn,i = 0, k = 0, . . . , sn+1 − 2,
then the LFSR with the characteristic polynomial Qn generates any sequence
f0, . . . , fk, where k = 2sn, . . . , sn + sn+1 − 2. Therefore, we have Λk =
Qn, k = 2sn, . . . , sn + sn+1 − 1. Further, we find dn+1 = sn+1 − sn. Let’s
look for the polynomial Qn+1 in the form an+1(z)Qn(z) + Qn−1(z), where
deg an+1 = dn+1. The polynomial Qn+1 is uniquely determined (with an ex-
actitude up to a constant factor) by the condition Qn+1 ⊥ Polsn+1 . By the
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induction hypothesis Qn ⊥ Polsn+1−1, but the polynomial Qn is not orthog-
onal to the space Polsn+1 . Hence, (Qn(z), zsn+1−1) = ∆sn+sn+1−1 �= 0. Since
an+1(z)zk ∈ Polsn+1−1, z

k ∈ Polsn−1, we see that for any polynomial an+1
of degree dn+1 an+1(z)Qn(z) + Qn−1(z) ⊥ Polsn−1. To choose the polynomial
an+1 such that the polynomial an+1(z)Qn(z) + Qn−1(z) is orthogonal to the
space generated by the monomials zsn−1, . . . , zsn+1−1, we need next condition.
The projections of the polynomials an+1(z)Qn(z) and Qn−1(z) on this space are
opposite, i.e. (an+1(z)Qn(z), zk) = −(Qn−1(z), zk), k = sn − 1, . . . , sn+1 − 1.
These equalities concerning coefficients of the polynomial an+1 determine the
system of linear equations with a triangular matrix. This system may be solved
by the following iterated algorithm.
A step with any number. At i−th step we correct the polynomial Q

(i−1)
n+1

iff ∆sn+sn+1+i−2 = (Q(i−1)
n+1 , zsn+i−2) �= 0. Then we look for the Q

(i)
n+1 =

Q
(i−1)
n+1 + cQnzdn+1−i+1 such that Q

(i)
n+1 ⊥ zsn+i−2. For this goal we search

a constant c such that the projections Q
(i−1)
n+1 , cQnzdn+1−i+1 on the mono-

mial zsn+i−2 are opposite. Hence, c = −∆sn+sn+1+i−2/∆sn+sn+1−1. Since
Q

(i−1)
n+1 ⊥ Polsn+i−2 by the induction hypothesis, we have Q

(i−1)
n+1 ⊥ zsn+k

for any k,−1 � k � i − 3. Therefore, (Q(i)
n+1, z

sn+k) = (Q(i−1)
n+1 , zsn+k) +

(cQnzdn+1−i+1, zsn+k) = c(Qn, zsn+1+k+1−i) = 0. Since Q
(i)
n+1 ⊥ Polsn+i−1, we

see that Λsn+sn+1+i−2 = Q
(i)
n+1. Last step. Finally, at dn+1 + 1−th step we

get the polynomial Q
(dn+1+1)
n+1 = Qnan+1 + Qn−1, deg Q

(dn+1+1)
n+1 = sn+1, such

that Q
(dn+1+1)
n+1 ⊥ Polsn+dn+1 = Polsn+1 . This polynomial coincides with the

polynomial Qn+1. Hence Λ2sn+1 = Qn+1.
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