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Abstract. In recent paper [5] a procedure was developed to control a
step size for Runge-Kutta methods. Here, we present a new version of
that step size selection to make it better in exceptional cases when the
old version does not work appropriately.

In this paper, we consider a system of differential-algebraic equations (DAEs) of
the form

x′(t) = g
(
x(t), y(t)

)
, y(t) = f

(
x(t), y(t)

)
, (1)

where t ∈ [0, T ], x(t) ∈ Rm, y(t) ∈ Rn, g : D ⊂ Rm+n → Rm, f : D ⊂ Rm+n →
Rn, and where an initial conditions x(0) = x0, y(0) = y0 are also given and they
are consistent; i. e., y0 = f(x0, y0). We suppose that problem (1) possesses an
unique solution z(t) def=

(
x(t)T , y(t)T

)T on the interval [0, T ].
To solve problem (1) numerically, we applied an l-stage Runge-Kutta (RK)

method and come to the following discrete system:

xki = xk + τk

l∑

j=1

aijg(xkj , ykj), yki = f(xki, yki), i = 1, 2, ..., l, (2a)

xk+1 = xk + τk

l∑

i=1

big(xki, yki), yk+1 = f(xk+1, yk+1), k = 0, 1, ...,K− 1, (2b)

We assume further that the RK formula is of order s, and that problem (1)
satisfies the smoothness condition and the nonsingularity one in a neighborhood
of the solution z(t) on the interval [0, T ] (we refer to [5] for details).

It is well-known [1], [2], [3] that under the conditions mentioned above prob-
lem (1) is of index 1 and method (2) is convergent of order s. Moreover, it was
proved in [3] that the local error of method (2) has the form

x(tk+1) − x̃k+1 = ψ̌s+1(tk)τ s+1
k +O(τ s+2

k ), (3a)

y(tk+1) − ỹk+1 = φ̌s+1(tk)τ s+1
k +O(τ s+2

k ), (3b)
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k = 0, 1, . . . ,K−1, as τk → 0, where z̃k+1
def=

(
(x̃k+1)T , (ỹk+1)T

)T is the solution
of (2) provided that zk = z(tk), and the functions ψ̌s+1(tk), φ̌s+1(tk) denote the
coefficients of leading terms of the local error of RK method (2). In addition,
Theorem 2.1 in [4] establishes that the global error of method (2) possesses the
following asymptotic expansion:

x(tk+1) − xk+1 = ψs(tk+1)(τ∗
k )s +O

(
(τ∗

k )s+1), (4a)

y(tk+1) − yk+1 = φs(tk+1)(τ∗
k )s +O

(
(τ∗

k )s+1), (4b)

k = 0, 1, . . . ,K − 1, as τ∗
k → 0, where the pair of functions ψs(t) and φs(t) is a

solution of the DAEs

ψ′
s(t) = ∂xg

(
x(t), y(t)

)
ψs(t) + ∂yg

(
x(t), y(t)

)
φs(t) + ψ̌s+1(t), (5a)

φs(t) = ∂xf
(
x(t), y(t)

)
ψs(t) + ∂yf

(
x(t), y(t)

)
φs(t), (5b)

ψs(0) = 0, φs(0) = 0. (5c)

The new step size τ∗
k in formulas (4) means a step size for integrating problem (1)

in the local interval [tk, tk+1] by a fixed step size version of method (2). Below,
we will discuss how to define it more precisely.

Taking into account possible stiffness of problem (5), we apply the implicit
Euler method to this problem and obtain the following recursion relation for an
approximate computation of the functions ψs(t) and φs(t):

(
ψ̃s(tk+1)
φ̃s(tk+1)

)
= P−1

k+1

(
ψ̃s(tk) + τkψ̂s+1(tk+1)

0

)
, (6a)

ψ̃s(0) = 0, φ̃s(0) = 0, k = 0, 1, . . . ,K − 1, (6b)

where

Pk+1
def=

(
Im − τk∂xg

(
x̃k+1, ỹk+1

) −τk∂yg
(
x̃k+1, ỹk+1

)

−∂xf
(
x̃k+1, ỹk+1

)
In − ∂yf

(
x̃k+1, ỹk+1

)
)
.

In formula (6a), 0 denotes the null vector of dimension n, but full particularities
can be found in [5].

The next important stage in the numerical integration of semi-explicit DAEs
of index 1 is a selection of the maximum step size keeping the truncated local and
global errors bounded. Let εl and εg be given limits for the local and global errors
of method (2), respectively. Considering that the global error of the numerical
solution at the point tk does not exceed εg, we now explain how to find an
approximate solution of problem (1) at the point tk+1 with the given accuracy.

We first compute the local error at the point tk+1, by using any classical
approach, with the accuracy εl (see, for example, [3]). After that we determine
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the coefficient of the principal term of the global error by formulas (6). Then we
find the maximum step size τ∗

k guaranteeing the necessary accuracy1:

p =

[

τk

(∥
∥
∥
(
ψ̃s(tk+1)T , φ̃s(tk+1)T

)T
∥
∥
∥/εg

)1/s
]

+ 1, τ∗
k = τk/p. (7)

Further, we solve problem (1) on the local interval [tk, tk+1] by method (2) with
the fixed step size τ∗

k and obtain the numerical solution at the point tk+1 with
the accuracy εg. Moreover, in order to compensate the influence of the rejected
terms in global error expansion (4) we improve the numerical solution by means
of Richardson extrapolation or two RK methods of different orders. Now we set
the next step size τk+1 = τ∗

k and repeat all the computations at the next time
point, and so on.

In [5], it was shown that, with a practical point of view, it is important to
use the stable version of the local-global step size control with an additional
bound εgl. To demonstrate the nice practical properties of the stable controller,
we apply the Trapezoidal Rule with Newton iteration (TRN method) to the
restricted three body problem in differential-algebraic formulation [5].

Table 1. Global errors of the variable step size TRN method with the stable local-
global step size control and with extrapolation (εl = εg and εgl = εg/100)

Number of required accuracy
iterations N εg = 10−03 εg = 10−05 εg = 10−07 εg = 10−09 εg = 10−11

1 6.40 · 10−04 8.12 · 10−06 4.74 · 10−08 2.04 · 10−10 2.90 · 10−12

2 6.52 · 10−04 8.06 · 10−06 4.73 · 10−08 2.16 · 10−10 3.62 · 10−13

From the data of Table 1 it follows that the variable step size TRN method
with the stable local-global error control mechanism achieves automatically any
reasonable accuracy preassigned for the numerical solution, even when only one
Newton iteration per each time point has been fulfilled.

Table 2. Global errors of the variable step size TRN method with the stable local-
global step size control and with extrapolation (εl = εg and εgl = εg/100)

Number of required accuracy
iterations N εg = 10−03 εg = 10−04 εg = 10−05 εg = 10−06 εg = 10−07

1 1.57 · 10+02 4.43 · 10+00 1.92 · 10+00 2.07 · 10+00 2.00 · 10+00

2 1.85 · 10+00 1.00 · 10+00 1.10 · 10−01 3.47 · 10−02 3.22 · 10−03

3 1.85 · 10−01 1.96 · 10−02 2.19 · 10−03 1.82 · 10−04 3.46 · 10−05

1 The square brackets in formula (7) means, as is customary, the integral part of the
number.
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Table 3. Global errors of the variable step size TRN method with the advanced stable
local-global step size control and with extrapolation (εl = εg and εgl = εg/100)

Number of required accuracy
iterations N εg = 10−03 εg = 10−04 εg = 10−05 εg = 10−06 εg = 10−07

1 1.82 · 10+00 1.58 · 10+00 8.87 · 10−01 1.86 · 10−01 3.91 · 10−02

2 1.02 · 10−02 5.92 · 10−04 3.12 · 10−05 1.53 · 10−06 7.41 · 10−08

3 1.02 · 10−05 7.67 · 10−08 1.86 · 10−10 2.47 · 10−09 1.18 · 10−09

Let us now show that the stable local-global step size control sometimes can-
not provide the required accuracy. To illustrate this, we take the TRN method
with trivial predictor and apply it to the restricted three body problem on the
double interval [0, 2T ]; i. e. we have increased the length of the integration seg-
ment by a factor of 2. This makes the test problem more difficult for solving with
the guaranteed accuracy because of round-off errors and the omitted terms in
global error expansion (4). Indeed, the numerical results demonstrate that our
error control mechanism cannot provide the required accuracy for any number
of Newton iterations per time point (see Table 2).

To improve the local-global step size control in order to solve our test problem
with the necessary accuracy, we involve more terms of the global error expansion
in the error control procedure. First of all Richardson extrapolation gives us a
way to find any reasonable number of the first terms in the local error expansion.
Then, by substitution of the coefficients of these terms in the inhomogeneous
part of equation (5a), we obtain systems of linear DAEs for the coefficients of
relevant terms in the global error expansion. After that we can use the main
ideas discussed above in order to compute and control some first leading terms
of the global error of Runge-Kutta methods. If we now derive the advanced stable
local-global step size control based on the computation of the two first leading
terms of the global error expansion and apply it to our test problem then we
see that the new advanced version of the step size control is more reliable for
practical use (see Table 3). Finally, it is necessary to point out that, as the last
example shows, the sufficient quantity of Newton iterations is very important
for our step size control to be valid. We refer to [6] for more details.
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